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Abstract 

Students often change majors during college, and most workers change jobs throughout 

their careers. Yet the diverse opportunities for entering natural science, technology, engineering, 

and mathematics (STEM) fields are often overlooked during college and beyond. This 

dissertation therefore analyzed four large nationally representative datasets to characterize the 

pathways for joining STEM among college students and workers from non-STEM backgrounds.  

My theoretical framework contrasts sharply with the popular “leaky pipeline” metaphor, 

which has often pervaded debates about STEM talent in the United States. Since the 1980s, this 

metaphor has focused attention on plugging “leaks” in the pipeline (i.e., increasing STEM 

persistence) but away from more comprehensive strategies for addressing workforce needs. I 

argue that educators, employers, and policymakers should instead think of a network of pathways 

along which students and workers can take different routes to STEM competence. This pathways 

metaphor provides novel ways for thinking about developing STEM talent. For instance, late 

entry points into STEM offer new opportunities for recruiting women, especially given the large 

pool of women who start college as a non-STEM major and graduate with non-STEM degrees. 

Across two studies, my dissertation studied pathways for joining STEM in the transitions 

from (a) beginning of college to graduation and (b) college graduation to the workforce. Nearly 

one fifth of STEM graduates started college as a non-STEM major, and one fifth of college-

educated STEM workers had no bachelor’s degree or higher in any STEM field. Analyses 

described joiners’ educational history and job characteristics, identified predictors of STEM 

joining, and estimated the national impact of further widening joining pathways. 

Study 1 found that joiners had similar high school STEM preparation compared to so-called 

“leaks” in the STEM pipeline (i.e., students who went from STEM to non-STEM majors) but had 
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weaker preparation than persisters (i.e., STEM graduates who started college in STEM). 

Nevertheless, compared to persisters, joiners achieved similar undergraduate success in terms of 

STEM course grades and rates of graduating college on time (i.e., within four years). Grades in 

introductory STEM courses strongly predicted STEM attrition but not STEM joining, indicating 

asymmetric pathways for leaving versus joining STEM. In contrast to grades, taking STEM courses 

early in college strongly predicted later earning of STEM bachelor’s degrees among initial non-

STEM majors, even after controlling for many theoretically relevant covariates. Impact analyses also 

found that, compared to “plugging the leaky pipeline” for female STEM majors, closing gender gaps 

in STEM joining would more potently increase women’s representation among STEM graduates. 

Study 2 studied pathways for joining the computing and engineering workforce among non-

STEM college graduates. Results suggested that joiners used their non-STEM educational training 

by working on non-STEM job tasks such as finance and management at higher rates than persisters. 

Overall, pathways were far more open for joining the computing than engineering workforce. 

Careers in both these fields appeared to be unattractive to non-STEM graduates who valued 

benefitting society, consistent with common perceptions that STEM jobs lack career opportunities 

to help others. Impact analyses found that an additional 820,000 college graduates would have been 

computer scientists in 2015 if communally oriented workers had joined computing as often as other 

non-STEM graduates. Most of these additional computer scientists would have been women. 

These results suggest new strategies for broadening participation in STEM. Based on Study 

1, postsecondary educators and policymakers should evaluate how to facilitate STEM joining 

pathways by increasing the quality and quantity of STEM courses that non-STEM majors take 

early in college. Based on Study 2, employers should consider how to communicate to potential 

applicants, especially non-STEM graduates, that STEM careers offer ways to help others. 
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Chapter 1: An Overview 

Many U.S. policymakers and employers have urgently called for more workers with 

skills and training in natural science, technology, engineering, and mathematics (STEM) fields to 

meet the needs of an economy that increasingly relies on technological innovation (National 

Science Board, 2018). The U.S. STEM workforce has grown much faster than the general U.S. 

workforce in past decades and is projected to do so over the next decade (Noonan, 2017). In 

addition, the demand for technological skills and STEM knowledge has been increasing in nearly 

all fields of employment, even for jobs not traditionally categorized as STEM jobs (President’s 

Council of Advisors on Science and Technology [PCAST], 2012). Failing to address the need for 

more workers with STEM skills could threaten the United States’ economic growth and capacity 

to innovate. As the National Science Board (2018) argued, such workers “are integral to a 

nation’s innovative capacity because of their high skill level, their creative ideas, and their ability 

not only to advance basic scientific knowledge but also to transform advances in fundamental 

knowledge into tangible products and services” (p. 3-9).  

To help address these national needs, many employers have sought to broaden the STEM 

talent pool by recruiting women (Saujani & Sweet, 2016). Although women are roughly half of 

the U.S. workforce, they are sparsely represented in several STEM fields. Among college-

educated workers, for instance, women were 25% of computer science workers and 15% of 

engineering workers in 2015 (National Survey of College Graduates, 2015). In addition to 

addressing workforce needs, recruiting women into STEM is important for advancing gender 

equity. Compared to non-STEM jobs, STEM jobs offer women higher pay and lower 

unemployment rates, especially in computing and engineering (National Science of Board, 
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2018). In other words, the lack of gender diversity in STEM limits both employers’ access to the 

broadest possible STEM talent pool and women’s access to high-value jobs. 

My dissertation analyzed four nationally representative datasets to inform policies and 

interventions for addressing both national issues of (a) need for more workers with STEM skills 

and (b) lack of gender diversity in STEM. More specifically, my analyses focused on 

characterizing pathways for joining STEM among non-STEM majors and non-STEM degree 

holders. This focus on late entry into STEM contrasts with the dominant focus on STEM attrition 

(i.e., leaving STEM) found in most other research on STEM transitions among adults. My 

dissertation shows that the pathways for becoming scientists and engineers are far less rigid and 

linear than commonly assumed. Taking advantage of the diverse entry points into STEM could 

offer new solutions for addressing workforce needs and recruiting women into STEM. In 

contrast, dominant theoretical frameworks that focus solely on STEM attrition overlook the 

varied trajectories for obtaining STEM degrees and becoming STEM workers. 

History of the Leaky Pipeline Metaphor 

The metaphor of a “leaky pipeline” has pervaded debates about the nation’s limited supply 

of STEM talent for several decades. According to this metaphor, obtaining a STEM degree 

requires travelling a structured pipeline of key educational milestones such as taking calculus in 

high school, declaring a STEM major in college, and persisting until college graduation (Cannady, 

Greenwald, & Harris, 2014). Students with interest and aptitude for STEM often “leak” from the 

STEM educational pipeline at multiple time points creates a limited supply of STEM-trained 

workers. In her landmark report Who Will Do Science?, Berryman (1983) used this metaphor to 

explain the low numbers of women and underrepresented racial minorities among STEM Ph.D. 

earners. These demographic groups are sparsely represented at the Ph.D. level, she argued, because 



www.manaraa.com

 11 
they leave the STEM educational pipeline at higher rates than other groups at multiple transitions 

between graduating high school and earning Ph.D. degrees.  

Berryman (1983) has often been credited as the first to popularize this STEM pipeline 

metaphor, which has been widely used since her report (Xie & Shauman, 2003). For instance, 

Alper (1993) further popularized it by publishing an influential review article in Science 

provocatively entitled, “The Pipeline is Leaking Women All the Way Along.” By the early 

2000s, the pipeline metaphor had become so widespread that it was “commonly accepted as the 

dominant, if not the standard, conceptual framework within which to organize studies of the 

science educational and career trajectory,” Xie and Shauman (2003) argued (p. 8). In addition to 

explaining the underrepresentation of women in STEM, the pipeline metaphor has been applied 

to describe overall shortages of STEM graduates. For instance, graphic illustrations in STEM 

education reports have often depicted a progressively smaller STEM pipeline as students “leak” 

from it between the beginning of high school to college graduation (e.g., National Wildlife 

Federation, 2013; New York Hall of Science, 2012; North Shore Technology Council, 2013). In 

this way, the “leaky pipeline” metaphor has become widely used to describe both the national 

issues of STEM workforce shortages and lack of gender diversity. 

 Despite its widespread use, the pipeline metaphor has also received criticism from a 

minority of scholars (e.g., Bennett, 2011; Cannady et al., 2014; Xie & Shauman, 2003). For 

instance, Xie and Shauman (2003) argued that the pipeline metaphor does not capture the complex, 

multifaceted processes of becoming a scientist and directs attention away from considering 

alternative educational and career trajectories such as late entry into STEM. Recent empirical 

research has also found fundamental inaccuracies in the metaphor’s application (Cannady et al., 

2014; Miller & Wai, 2015). For instance, many U.S. students earn STEM degrees without having 
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completed milestones that are often assumed to be prerequisites. One such example is taking 

calculus in high school. One nationally representative dataset found that, among STEM bachelor’s 

degree earners who entered postsecondary education in 2003, almost half (49%) had not taken 

calculus in high school1 (Beginning Postsecondary Students 04/09 Sample, 2016). In another 

national longitudinal study, many STEM bachelor’s degree earners (39%) had not intended to 

pursue STEM when asked in either the 8th or 12th grade (Cannady et al., 2014). These statistics show 

that the processes for obtaining STEM degrees in the United States are much more diverse than 

what the STEM pipeline metaphor might suggest. In other words, new frameworks are needed that 

more fully and accurately capture the complex educational and career trajectories in STEM fields. 

Pathways as a New Metaphor 

Along with other scholars, I propose replacing the metaphor of a singular STEM pipeline 

with a network of multiple pathways into and out of STEM fields (Cannady et al., 2014; Mervis, 

2012; PCAST, 2012; Xie & Shauman, 2003). For instance, a 2012 report by the President’s Council 

of Advisors on Science and Technology (PCAST) argued that, “rather than a single pipeline that is 

prone to leakage…educators and policymakers should think of a network of pathways along which 

students can take different routes to STEM readiness and competency” (PCAST, 2012, p. 31). This 

perspective builds on prior structural and psychological theoretical perspectives. Structural factors 

such as institutional course requirements can create, facilitate, or constrain certain pathways 

(Charles & Bradley, 2009; Merolla, Serpe, Stryker, & Schultz, 2012). However, students will 

choose and travel these pathways differently because of psychological factors such as interests, 

social identities, and prior academic preparation (Diekman, Clark, Johnston, Brown & Steinberg, 

                                                
1 This statistic varied some across bachelor’s degree field: biological and biomedical sciences (47%), computer 
science (64%), engineering (39%), mathematics and statistics (30%), physical sciences (46%),  
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2011; Eccles, 2011; Leslie, Cimpian, Meyer, & Freeland, 2015; Nix, Perez-Felkner, & Thomas, 

2015; Wai, Lubinski, Benbow, & Steiger, 2010). Based on Eccles’ (2011) expectancy-value theory, 

for instance, individuals make educational choices based on (a) expectations for success and (b) the 

value given to the perceived available options. This theory emphasizes that individuals make 

relative assessments of the benefits and costs of different pathways. For instance, among individuals 

with high math performance, those with weaker verbal performance are more likely to pursue 

STEM careers (Wang, Eccles, & Kenny, 2013). This result suggests individuals compare 

performance across domains when assessing their strengths and making occupational choices. 

 Compared to the leaky pipeline metaphor, this new metaphor of STEM pathways better 

represents developmental theories of identity formation such as Arnett’s (2000) theory of 

emerging adulthood. Arnett proposed that the developmental period between late teens and early 

twenties is one in which, “independent exploration of life’s possibilities is greater for most 

people than it will be at any other period” (p. 469). Consistent with this hypothesis, empirical 

data show that students frequently explore different academic pathways, regardless of their initial 

major. In one study, for instance, roughly one half of beginning bachelor’s degree students left 

their initial intended major by either switching majors or leaving postsecondary education (Chen 

& Soldner, 2013). Surprisingly, attrition rates in STEM fields were typically equal or lower than 

those in other fields. STEM fields are therefore not especially “leaky”; the “leaks” instead reflect 

young adults’ more general tendency to explore different academic identities. The pathways 

metaphor captures this phenomenon by recognizing this explorative nature of young adults. In 

contrast, the pipeline metaphor misrepresents identity formation by implicitly suggesting that 

attrition is especially high in STEM compared to other majors. 
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 The pathways metaphor also offers novel approaches for addressing STEM workforce 

needs by directing attention to pathways for late entry into STEM such as joining STEM after 

starting college as a non-STEM major. These alternative pathways may be particularly important 

for increasing gender diversity. Few women start college intending to major in certain STEM 

fields such as computer science and engineering (Ceci et al., 2014). Because this initial pool of 

women is small, increasing the persistence of those female STEM majors may not generate many 

more female STEM graduates. Educators and policymakers could instead look to currently 

untapped sources of talent such as female non-STEM majors to more potently increase gender 

diversity. As the 2012 PCAST report argued, educators have “given much attention to ‘off-

ramps,’ the drop-out and attrition patterns,” but should also give “equal attention…to on-ramps, 

multiple routes to enter or re-enter STEM education” (PCAST, 2012, p. 30-31). 

My Dissertation 

Addressing Gaps in Prior Literature 

My dissertation characterized pathways for joining STEM from non-STEM fields – 

hereafter called STEM joining – during the transitions from (a) the first year of college to college 

graduation and (b) college graduation to the STEM workforce in the United States. Analyzing both 

transitions allowed me to more comprehensively characterize the often overlooked educational and 

career trajectories in STEM and their implications for meeting pressing national workforce needs. 

Prior research on nontraditional pathways for entering STEM has typically focused on transitions 

before college or between high school and college, but not during or after college (e.g., Cannady et 

al., 2014; Xie & Killewald, 2012). This prior research therefore leaves unanswered questions about 

the openness of joining STEM as students enter emerging adulthood – a period of development in 

which students explore many other identities and worldviews (Arnett, 2000). Nearly all research on 
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postsecondary transitions in STEM has focused on students leaving, not joining, STEM fields (e.g., 

Chen & Soldner, 2013; Graham et al., 2013; Miller & Wai, 2015; Watkins & Mazur, 2013). 

College educators may therefore be unaware of how to best leverage the potentially diverse 

postsecondary pathways into STEM and support students aiming to make that transition.  

Furthermore, most prior research has also assumed that STEM degrees are needed to pursue 

STEM careers (Cannady et al., 2014, Figure 2; National Science Board, 2018). This assumption 

overlooks the myriad of ways that workers might learn STEM skills after formal education (e.g., 

through on the job training or gradually taking on more STEM-relevant job tasks). National statistics 

indicate that even the pathways for joining the STEM workforce are far more open and complex than 

often assumed. For instance, in 2015, approximately 1.2 million STEM workers were college 

graduates without a bachelor’s degree or higher in any STEM field, which was one-fifth of the 

college-educated STEM workforce (National Survey of College Graduates, 2015). In other words, 

STEM employers already hire many workers without STEM degrees, but have little guidance from 

scholarly research on best practices for doing so. The aim of this dissertation was to address these 

critical gaps in prior literature by examining STEM joining pathways during college and beyond. 

Defining STEM Joiners and STEM Fields 
 

STEM joiners were defined as people who entered STEM from a non-STEM background. 

However, the exact operational definition varied across this dissertation’s two studies. In the first 

study on postsecondary education transitions, “STEM joiners” referred to STEM bachelor’s 

degree earners who intended a non-STEM major during students’ first year at a four-year 

institution. In the second study on education to workforce transitions, “STEM joiners” referred to 

college-educated STEM workers who had no bachelor’s or graduate STEM degree.   
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For both studies, the definition of “STEM majors” was based on the National Center for 

Education Statistics’ classification of STEM fields, which included physical and life science, but 

excluded social science and health/nursing (Chen & Soldner, 2013). Under this broad category of 

“STEM,” women’s representation varied greatly by field. For instance, in 2015, women earned 

59% of the U.S.’s bachelor’s degrees in life science, but only 25% of bachelor’s degrees in 

physical science, technology, engineering, and mathematics (pSTEM; WebCASPAR, 2018). For 

this reason, any gender-related analysis included at least some level disaggregation (e.g., 

separately analyzing life science vs. pSTEM majors).  

Answering Cross-Cutting Research Questions 

In both studies, analyses were organized around answering three cross-cutting questions: 

(a) who are STEM joiners? (b) what predicts STEM joining? (c) what is the impact of widening 

joining pathways? Investigating these three questions helped describe the basic phenomenon of 

STEM joining as well as identify points of intervention and their potential impact on solving 

national workforce needs. These analyses can help form the basis for future research on developing 

policies and supports for leveraging the diverse pathways into STEM during college and beyond. 

Who are STEM joiners? For each study, I first focused on developing a descriptive 

account of STEM joiners in terms of their prior educational history, demographics, and specific 

types of STEM majors and jobs they pursued. Answering this question involved comparing 

STEM joiners to other relevant groups such as people who persisted in STEM (e.g., intended a 

STEM major early in college and then later earned a STEM degree) on dimensions such as high 

school STEM preparation and job characteristics. Simple descriptive statistics such as means and 

percentages were used to answer this first question; no complex statistical modeling (e.g., 

multiple regression analysis) was needed. 
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What predicts STEM joining? Second, I identified factors that predicted which 

potential joiners (i.e., people from non-STEM backgrounds) later pursued STEM majors and 

jobs. For instance, in the first study on postsecondary transitions, analyses examined how two 

early-college factors – course-taking and grades – predicted later earning of STEM bachelor’s 

degrees. Psychological theories on identity formation and goal pursuit guided the selection of 

predictors for analysis and interpretation of correlational results. Multivariable models such as 

multiple regression and propensity score matching were used to control for potential self-

selection effects and other confounds. These analyses aimed to identify what factors had a causal 

effect on students’ decisions; however, conclusions about causal effects were limited given the 

correlational nature of these data. Experimental data would have been needed to more 

definitively rule out alternative explanations. 

What is the impact of widening joining pathways? Finally, I explored the potential 

national impact of increasing STEM joining rates. These analyses estimated the current national 

prevalence of STEM joining and quantified how much joining rates would need to change to 

meet projected STEM workforce growth (PCAST, 2012; Noonan, 2017). These analyses also 

considered the national impact of increasing women’s joining rate to match that of men’s. For 

instance, these analyses considered the effectiveness of closing the gender gap in STEM joining 

versus retention on increasing gender diversity among STEM graduates. Like the first research 

question, simple descriptive statistics such as percentages and sums of probability survey 

weights were used to answer these questions. 
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Chapter 2: Pathways for Joining STEM During College 

For over twenty years, the “leaky pipeline” metaphor has pervaded national debates about 

producing natural science, technology, engineering, and mathematics (STEM) graduates (Alper, 

1993). Based on this characterization, the U. S. suffers from a shortage of STEM graduates because 

students “leak” from the STEM pipeline at multiple points. Women are thought to leak from this 

pipeline at higher rates than men, which explains the low numbers of women among STEM Ph.D. 

earners and professors (Miller & Wai, 2015). Here we take a different approach by focusing on 

students who join STEM from non-STEM majors (hereafter, STEM joiners) and studying factors that 

facilitate that transition. Addressing gender gaps in joining STEM could also provide a novel strategy 

for increasing gender diversity among STEM bachelor’s degree earners. 

Many students substantially change their identities and worldviews during college. 

According to Arnett (2000), the late teens and early twenties is a period of emerging adulthood in 

which, “independent exploration of life’s possibilities is greater for most people than it will be at 

any other period” (p. 469). Nationally representative studies confirm that college is an unstable time 

for many students. In one study, roughly one half of beginning bachelor’s degrees students left their 

initial intended major by either switching majors or leaving postsecondary education (Chen & 

Soldner, 2013). Surprisingly, attrition rates in STEM fields were not higher than those for other 

fields, and in some cases, were lower. STEM fields are therefore not especially “leaky”; the “leak” 

instead reflects a more general tendency of young adults to “try on” multiple academic identities.   

The STEM pipeline metaphor therefore misrepresents identity formation during emerging 

adulthood by suggesting that attrition is especially high in STEM compared to other majors. The 

metaphor also misrepresents why some groups such as women are underrepresented in STEM. 

Contrary to common perceptions, women and men now persist in physical science and engineering at 
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comparable rates for many segments between college and achieving academic tenure (Ceci, Ginther, 

Kahn, & Williams, 2014; Miller & Wai, 2015). Gender gaps in STEM persistence exist before 

college, but the pathways for joining STEM are especially open at those earlier ages. In one national 

longitudinal study, for instance, many STEM bachelor’s degree earners (39%) had not intended to 

enter STEM when asked in either 8th or 12th grade (Cannady et al., 2014). New frameworks are 

therefore needed for thinking about how to broaden participation in STEM fields.  

We propose replacing the metaphor of a singular STEM pipeline with a network of multiple 

pathways into and out of STEM fields, along with other scholars (Cannady et al., 2014; Mervis, 

2012; PCAST, 2012; Xie & Shauman, 2003). This perspective on multiple pathways builds on prior 

structural and psychological theoretical perspectives. Structural factors such as institutional course 

requirements can create, facilitate, or constrain certain pathways (Charles & Bradley, 2009; Merolla 

et al., 2012; Wang, 2013). However, students will choose and travel these pathways differently 

because of psychological factors such as interests, social identities, and prior academic preparation 

(Diekman et al., 2011; Eccles, 2011; Leslie et al., 2015; Nix et al., 2015; Wai et al., 2010).  

Based on these theoretical perspectives, we hypothesized that taking STEM courses early 

in college would be especially important for two major reasons: structural and psychological. 

First, taking STEM courses early in college (e.g., during the first year) could create structural 

pathways for satisfying academic requirements for joining STEM. In contrast, taking STEM 

courses early in college could both foster interest in STEM and enable more advanced STEM 

course-taking in subsequent semesters. Such exposure can help students to realize how STEM 

fields align with some individuals’ goals and interests (e.g., Diekman et al., 2011; Eccles, 2011; 

Merolla et al., 2012). Thus, similar to brief social psychological interventions (Walton, 2014), 
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taking even just one additional STEM course early in college could initiate recursive processes 

that unfold over years, eventually changing students’ majors.  

We hypothesized also that earning high grades in introductory STEM courses would also 

contribute to decisions to enter STEM. According to Eccles’ (2011) expectancy-value model, grades 

serve as objective cues shaping students’ expectancies for success in a particular domain. Grades 

can also reflect students’ motivations to persist on challenging domain-specific tasks. Much prior 

psychological literature has therefore understandably focused on grades as critical predictors and 

dependent variables in STEM fields (Chen & Soldner, 2013; Miller & Halpern, 2014).  

The pre-college pathways of STEM graduates are considerably diverse (Cannady et al., 

2014; Maltese & Tai, 2011; Xie & Killewald, 2012; Xie & Shauman, 2003), but the openness of 

pathways for joining STEM during college remains unclear (Crisp, Nora, & Taggart, 2009; 

Griffith, 2010; Whitten et al., 2007). We therefore analyzed three large nationally representative 

samples to characterize the pathways for earning a STEM bachelor’s degree after intending a 

non-STEM major during students’ first year of college. Analyses focused on three guiding 

research questions about STEM joining pathways:  

(1)�Who are STEM joiners in terms of their educational backgrounds and outcomes?  

(2)�What early-college factors help facilitate joining STEM?   

(3)�What is the potential national impact of increasing STEM joining rates?  

The first and third research questions involved obtaining descriptive statistics (e.g., means, 

percentages), whereas the second question involved conducting inferential analyses that 

controlled for potential self-selection and other confounds. For the second question, we used pre-

college variables such as high school STEM preparation as covariates when estimating the 

effects of early-college variables.  
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Method 

We analyzed three nationally representative samples to characterize STEM joiners and the 

educational pathways they took. Each sample had its unique methodological strengths that 

collectively balanced the limitations of the others. For instance, one sample (Beginning 

Postsecondary Students) was best for estimating descriptive statistics about STEM joiners, whereas 

the other two samples were best for controlling for self-selection when estimating the causal effect 

of taking STEM courses early in college.  

Data sources. The datasets were Beginning Postsecondary Students (BPS), National 

Longitudinal Survey of Freshman (NLSF), and Project TALENT. The BPS sample (n = 16,680) 

was a stratified national probability sample whose target population was all students who started 

postsecondary education for the first time during the 2003-04 academic year at any U.S. 

postsecondary institution (Wine, Janson, & Wheeless, 2011). Students in the BPS sample were 

surveyed at three time points between entering postsecondary education and six years after 

entering postsecondary education (spring 2004 to summer 2009). NLSF (n = 3,924) was a 

randomly selected sample of first-time undergraduates who entered college in fall 1999 at one of 

28 selective 4-year public and private U.S. institutions (Charles, Fischer, Mooney, & Massey, 

2009). Students in the NLSF sample were surveyed at five time points between entering college 

and four years after entering college (fall 1999 to spring 2003); the National Student Clearinghouse 

and the institutions’ registrar offices provided data on students’ six-year graduation status. The 

Project TALENT sample (n = 346,666) was a stratified national probability sample whose target 

population was all students who attended high school in 1960 (Wise, McLaughlin, & Steel, 1979). 

Students in Project TALENT were surveyed at four time points between high school and 11 years 

after graduating high school (spring 1960 to fall 1974).  
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Initial field of study. Students were asked slightly different questions about their initial 

major intentions across the three samples. In the first longitudinal wave, students in the BPS 

sample were asked, “Have you declared a major at [primary undergraduate school]?” and students 

in the NLSF sample were asked, “Have you already chosen a major?” If students answered “no,” 

they were categorized as “undecided” and not asked any further questions about their intended 

major field of study. In contrast, students in the Project TALENT sample were asked, “In which 

of the following areas do you expect to specialize or ‘major’ in college? Mark ONE even if you 

haven’t made up your mind definitely.” Hence, no students were categorized as “undecided” in 

the Project TALENT sample because of the question’s wording. 

Participant inclusion criteria. Unless otherwise noted, our descriptive and inferential 

analyses focused on students who (i) started postsecondary education at a 4-year institution, (ii) 

intended a specific major during their first year of college, and (iii) earned a bachelor’s degree 

within six years of entering college. Students who started postsecondary education at a 2-year 

institution were excluded to improve comparability across datasets (e.g., BPS vs. NLSF) and to 

focus our analyses. Only students who had intended a specific major were included because they 

were less ambiguous than undecided students. Undecided students could have been initially 

deciding between two STEM fields (e.g., physics or chemistry), a STEM and non-STEM field, 

two non-STEM fields, or other possibilities. Students labeled “undecided” in the BPS sample 

also could have chosen an initial major but simply not formally declared it yet when asked “Have 

you declared a major?” at the end of their first year in college. This ambiguity further supported 

our decision to include only students who initially intended a specific major. Only bachelor’s 

degree earners were included because our theoretical focus concerned differences between 

attaining STEM versus non-STEM degrees. Non-degree earners were therefore excluded, but 
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supplemental analyses investigated the robustness of our conclusions to the inclusion of non-

degree earners. As shown in an interactive website (https://d-miller.shinyapps.io/joiningSTEM/), 

results were robust to inclusion of non-degree earners. 

Descriptive analyses. Descriptive analyses investigated the prevalence of STEM joining, 

potential impact of increasing joining rates, and pre-college and undergraduate characteristics of 

STEM joiners. These analyses focused on the BPS sample because it was recent and 

representative of all U.S. postsecondary institutions. Government agencies routinely use BPS 

when forming policy decisions (PCAST, 2012). Data on students’ graduation status and course 

taking were based on transcripts collected through institutional registrar offices (Wine et al., 

2011). For all analyses, we used the weighting variable (WTB000) created by the National 

Center for Educational Statistics that accounted for student-level nonresponse bias and unequal 

sampling probabilities. An individual’s survey weight indicates the approximate number of 

people that the individual represents in the population. Sums of these weights were therefore 

used to estimate the size of various subpopulations (e.g., the number of STEM joiners per year). 

Table S7 in the Supplemental Materials available online presents detail on the more complicated 

calculations (i.e., projections for the hypothetical scenarios shown in Figures 7 & 8).  

Inferential analyses. Interpreting correlational data can be difficult, but multiple 

methods can help eliminate alternative explanations (Steiner, Cook, Shadish, & Clark, 2010). We 

therefore used multiple methods to (i) estimate the causal effect on early-college STEM course-

taking on later STEM joining, (ii) consider the plausibility of relevant model assumptions, and 

(iii) evaluate how violating those assumptions would have affected our estimates. Because 

correlational data often has serious limitations, using such multiple methods is needed to 

rigorously balance the strengths and limitations of each approach (Ichino, Mealli, & Nannicini, 
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2008). And as explained further, the datasets also helped eliminate alternative explanations by 

being longitudinal and having a rich set of informative covariates. 

We used multilevel logistic regression (Raudenbush & Bryk, 2002) and propensity score 

matching analyses (Caliendo & Kopeinig, 2008) to estimate causal effects by controlling for 

potential confounds (e.g., prior STEM course-taking, prior interests in STEM). These methods 

would have yielded unbiased causal estimates if the conditional independence assumption was 

true (also called the unconfoundedness assumption): conditional on observed covariates, the 

probability of receiving treatment was independent of the potential treatment outcome (Ichino et 

al., 2008). The conditional independence assumption is true for experimental designs because 

random assignment ensures that treatment status is independent of other factors that directly 

influence the potential treatment outcome. The plausibility of this assumption for non-

experimental designs depends on controlling for a large and informative set of observed 

covariates, such as those contained in the NLSF and Project TALENT datasets (see Tables S3 

and S4 for complete covariate lists). Controlling for such covariates can help reduce potential 

bias due to self-selection (Steiner et al., 2010).  

We also used regression models of STEM course taking to help consider what magnitudes of 

self-selection were plausible among students intending a non-STEM major. We first estimated the 

magnitude of self-selection due to observable variables (e.g., prior STEM course-taking, perceived 

difficulty of STEM courses) and then compared this magnitude to that among undecided students. 

This comparison allowed us to test the hypothesis that self-selection due to observed variables was 

smaller among students intending a non-STEM major than among undecided students.  

Finally, sensitivity analyses evaluated how unobserved confounders would have influenced 

our causal estimates (Ichino et al., 2008). We simulated unobserved confounders by varying the 
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extent to which they might have related to STEM course taking (treatment status) and STEM joining 

(treatment outcome). Such simulations showed how sensitive our causal estimates were to 

unobserved confounders. This methodological approach aligns with Ichino and colleagues’ (2008) 

argument that non-experimental studies have undeniable value but should “be put under the scrutiny 

of a sensitivity analysis…before being accepted as a guide for policy” (p. 325). Hence, testing causal 

claims with non-experimental data should be done cautiously, using multiple methods.  

Covariates for inferential analyses. The validity of causal inference in quasi-

experimental studies such as ours depends on controlling for a large and informative set of 

relevant pre-treatment covariates (Steiner et al., 2010). For this reason, inferential analyses 

focused on the NLSF and Project TALENT samples because they included diverse sets of pre-

college covariates that were potentially related to self-selection into early-college STEM courses. 

Covariates included demographics, high school STEM preparation (i.e., high school STEM 

course-taking, grades, and standardized test scores), educational and occupational plans in high 

school, perceived difficulty of STEM courses, and self-reported and behavioral indicators of 

STEM interests (see Tables S1 and S2 in the supplemental materials for complete covariate 

lists). Prior research and theoretical frameworks have shown these covariates to be important to 

students’ decisions to pursue STEM fields (e.g., Cannady et al., 2014; Eccles, 2011). Many of 

these pre-college covariates likely also influenced STEM joining, but out research goals focused 

more on estimating effects of early-college variables, especially early-college STEM course-

taking. Unless otherwise noted, the BPS sample was not used for inferential analyses because its 

set of STEM-related, pre-college covariates was far less extensive.  

Definition of STEM fields. The following fields were defined as STEM fields: 

biological/agricultural sciences, computer and information sciences, engineering, 
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mathematics/statistics, and physical sciences. Social science was categorized as non-STEM for 

the specific purposes of our analyses. The practice-oriented fields of health and medicine were 

also categorized as non-STEM, consistent with categorization schemes used by the National 

Science Foundation (NSF) and other researchers (e.g., Chen & Soldner, 2013; PCAST, 2012; 

Xie & Killewald, 2012). However, supplemental analyses investigated the robustness of our 

conclusions to the inclusion of initial health majors. For double majors, we only analyzed the 

major that students listed as primary. We typically analyzed “STEM” as an aggregate group, but 

also repeated all analyses disaggregating STEM (e.g., compare students who joined life science 

vs. physical science fields); as explained in the Results section, disaggregating STEM fields was 

especially important to study gender differences.  

Methodological strengths and limitations. All three samples had unique 

methodological strengths. The BPS sample provided a recent descriptive account of STEM 

joining that was representative of all U.S. postsecondary institutions. The NLSF sample focused 

on selective institutions, which have high rates for producing students who later earn STEM 

graduate degrees (Fiegener & Proudfoot, 2013). The Project TALENT sample provided the most 

rigorous controls for self-selection confounds. The diversity of these samples also established the 

robustness and generalizability of our results across four decades and institutional selectivity.  

Although the strengths of each sample often balanced the limitations of another, some 

general limitations should be noted. Data on STEM course-taking level (e.g., calculus vs. pre-

calculus) or pedagogical style (e.g., lecture-based vs. flipped classroom) were generally not 

available, for instance. Also if students answered they were undeclared (in the BPS sample) or 

hadn’t yet chosen a major (in the NLSF sample), they were labeled “undecided” and were asked no 

further questions about their intended field of study. This methodological limitation meant that 
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undecided students were an ambiguous group of students and therefore excluded from our analyses, 

unless otherwise noted. Future studies should examine the educational pathways of such students, 

but doing so was beyond the scope of this present study. 

Of course, the datasets also did not measure all potentially relevant variables that could 

have been self-selection confounds. Because self-selection confounds can threaten the validity of 

causal inference, our analyses explicitly considered the potential impact of unobserved variables 

(see Results 4 and 6 in Table S7). Concerns about unobserved confounds were also somewhat 

mitigated because such confounds likely correlated with some of the observed variables. For 

instance, Eccles’ (2011) expectancy-value theory posits that interests are proximal influences on 

educational decisions such as choosing a STEM major. According to this theoretical model, 

interests mediate the effects of more distal factors such as parental expectations and gender 

stereotypes. Controlling for proximal factors such as interests in STEM or prior STEM course 

taking could therefore partially control for more distal confounds (e.g., parental expectations). 

Results 

Who Are STEM Joiners? 

 Our first goal was to understand who STEM joiners are by using the BPS sample to 

characterize their initial majors, demographics, pre-college STEM preparation, and 

undergraduate success.  

Initial majors of STEM graduates. STEM joiners accounted for 18% of the U.S.’s STEM 

bachelor’s degree earners who entered college in 2003 (BPS sample). These joiners came from 

diverse non-STEM fields, especially health, business, social science, and education (Figure 2). 

Students who were initially undecided were another 23% of STEM graduates.  
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Figure 1. The initial intended majors of STEM graduates and STEM joiners (BPS sample). 

Demographics. STEM joiners were gender-balanced (51% women), though women were 

more common among students who joined life science (58% women) than physical science, 

technology, engineering, and mathematics (pSTEM) fields other STEM fields (40% women). We 

elaborate on this finding further below. The representation of Black and Latino students among 

STEM joiners (14% of joiners) was not significantly different (p > .250) from their representation 

among other initial non-STEM majors who later earned a bachelor’s degree (16%). In contrast, 

Asian students were twice as common among STEM joiners than other initial non-STEM majors 

(10% vs. 5%, p = .029). 

High school STEM preparation. STEM joiners had similar high school STEM 

preparation compared to “leaks” in the STEM pipeline, that is, students who switched from 

STEM to a non-STEM field (hereafter, STEM switch-outs). For instance, compared to STEM 

switch-outs, joiners had similar SAT Mathematics scores (Ms = 570 vs. 550, respectively, p 

= .140) and joiners were marginally more likely to have taken calculus in high school (49% vs. 
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38%, p = 0.064). We generally did not find differences in high school background between 

students who joined life science versus pSTEM fields (e.g., life science vs. pSTEM joiners had 

nonsignificantly different SAT Mathematics scores and high school STEM grades). 

STEM joiners had slightly weaker high school STEM preparation compared to students 

who persisted in STEM from the beginning of college to graduation (hereafter, STEM 

persisters). For instance, joiners scored 40 points lower on the SAT Mathematics test (p < .001) 

and were marginally less likely to have taken high school calculus compared to STEM persisters 

(49% vs. 59%, p = .056); see Table S3 for other comparisons.  

Undergraduate STEM success and course taking. STEM joiners, however, achieved 

similar undergraduate success compared to STEM persisters. For instance, the rate of graduating 

on time (i.e., within 4 years of entering college) was similar for STEM joiners and STEM 

persisters (49% vs. 51%, respectively, p > .250). Double majoring was more common among 

STEM joiners than persisters, though still infrequent for both groups (15% vs. 8%, respectively, 

p = .015). Grades in undergraduate STEM courses were also similar (Table S3). STEM joiners 

maintained interest in non-STEM fields by continuing to take non-STEM courses more 

frequently than STEM persisters (Figure 3). Hence, joiners could enrich STEM fields by 

injecting interdisciplinary training from outside fields.  
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Figure 2. Average STEM course taking rates throughout college (BPS sample).  

 Summary. STEM joiners were nearly one-fifth of recent STEM graduates, came from many 

non-STEM fields, were diverse demographically, and had similar high school STEM preparation 

compared to “leaks” in the STEM pipeline (i.e., STEM switch-outs). Joiners had slightly weaker 

STEM preparation compared to STEM persisters, but achieved similar undergraduate success.  

What Facilitates STEM Joining Pathways? 

Next, we sought to understand the pathways for joining STEM by investigating how 

early-college STEM grades and course taking related to STEM joining. Consistent with 

expectancy-value theory (Eccles, 2011), we predicted that grades would form expectancies for 

success and therefore impact decisions to enter STEM.  In addition, because this theory focuses 

on relative costs and benefits, we expected relative course performance (i.e., STEM minus non-

STEM grades) would be especially informative. We also predicted that early-college STEM 
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course taking would matter by initiating recursive processes that could change students’ majors 

over time (Walton, 2014); these analyses used all three samples for reasons described later.  

Early-college STEM grades. Contrary to predictions, early-college STEM grades weakly 

predicted STEM joining. For instance, in the BPS sample, grades in first-year STEM courses 

weakly predicted which initial non-STEM majors later earned STEM bachelor’s degrees, b = 0.13, 

95% CI [-0.08, 0.34]. As Figure 4b shows, similar results were found when analyzing relative 

course performance (i.e., STEM minus non-STEM grades). In fact, joiners’ first-year grades in 

STEM courses were an average 0.26 grade points lower than in non-STEM course (Ms = 3.01 vs. 

3.27, respectively).  However, contrary to our prediction, we found that relative grades were not a 

predictor of STEM joining. In fact, only very weak first-year STEM grades (GPA < 2.00) or much 

higher grades in non-STEM courses (more than a full letter grade) predicted a slight decrease in 

STEM joining rates (Figure 4). Results for STEM joining contrasted with results for STEM 

retention: early-college STEM grades strongly predicted which initial STEM majors persisted and 

later earned STEM bachelor’s degrees2, b = 0.86, 95% CI [0.57, 1.14]. This difference in 

regression slopes for joining versus retention (p < .001) replicated in both the NLSF (p = .003) and 

Project TALENT (p = .005) samples. Results therefore showed that early-college grades had an 

asymmetric importance for STEM joining versus STEM retention pathways. Many students can 

join STEM even if their early-college STEM grades are at not at the top of the grades distribution. 

                                                
2 This difference might be expected if initial non-STEM major students took less challenging early-college STEM 
courses than initial STEM majors. However, the difference in regression slopes was also found among students who 
had taken calculus or a more advanced mathematics course in the first year of college, p = .002. 



www.manaraa.com

 32 

 

Figure 3. The relationship between first-year STEM grades and STEM joining (BPS sample). 

STEM grades were measured on an absolute scale (A) or relative to non-STEM grades (B). Error 

bars represent 95% CIs. 

Early-college STEM course taking. In contrast to grades, early-college STEM course 

taking strongly predicted STEM joining. For instance, among students intending a non-STEM 

major, students who earned more than 30% of their first-year credits in STEM departments were 

4.5 times as likely as others to later earn a STEM bachelor’s degree (p < .001; BPS sample). This 

predictive effect of course taking was not significantly different for men and women. Moreover, 

results indicated a dose-response effect of this course taking (Figure 5A). However, students 

already interested in STEM could have self-selected into those courses, providing an alternate 
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explanation for such results. Further analyses therefore investigated these course taking results by 

controlling for potential confounds (e.g., prior interests in STEM topics). As mentioned earlier, 

these analyses focused on the NLSF and Project TALENT samples because they included much 

more comprehensive sets of pre-college covariates than did the BPS sample. 

Figure 4. The dose-response relationship between early-college STEM course taking and STEM 

joining (NLSF sample). The first graph (A) shows this relationship descriptively by not controlling 

for other predictors (BPS sample). The second graph shows the estimated average marginal effects 

that held constant many other predictors (NLSF sample). Error bars represent 95% CIs. 

Controlling for self-selection confounds. Even after controlling for many potential 

confounds, early-college STEM course taking predicted later earning of STEM bachelor’s degrees 
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among initial non-STEM majors. For instance, in the recent NLSF sample (Figure 5B), taking two 

or more first-semester STEM courses predicted a doubling of the average STEM joining rate 

relative to taking one such course or none (13% vs. 6%, respectively, when holding other 

predictors constant, p < .001; see Table S4 for more details). We found similar results with Project 

TALENT (Table S5), meaning that our results replicated across these diverse datasets that spanned 

four decades and levels of institutional selectivity.  

Mechanistic insight into why early-college course taking matters. STEM course 

taking in the first semester predicted later earning of STEM bachelor’s degrees years later 

because it predicted STEM course taking in the next two semesters (Figure 6, NLSF sample). 

This result was consistent with the hypothesis that early-college STEM course taking (e.g., in the 

first semester) creates structural pathways for joining and later persisting in STEM.  
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Figure 5. Mediational pathway by which first semester STEM course taking predicts later 

earning of STEM bachelor’s degrees. In the NLSF sample, the predicted effect of first-semester 

STEM course-taking on later STEM joining (A) was partially mediated by second-semester 

STEM course-taking (B) and third-semester STEM course-taking (C). The numerical values are 

the unstandardized regression coefficients for STEM course-taking variables in multilevel 

logistic regression models of STEM joining (solid lines) or the unstandardized coefficients for 

course-taking variables in multilevel models of later STEM course-taking (dotted lines). All 

models controlled for pre-college variables and intending a pre-medicine major (see Table S1); 

for simplicity, regression coefficients for these other variables are not shown.  

***p < .001. **p < .01. *p < .05. †p < .10. 

Institutional variability. Early course taking also helped explain why some institutions 

had particularly high STEM joining rates. For instance, one in five institutions in NLSF had a 

joining rate above 12% and another one in five had a rate below 6%. Multilevel analyses 

(Raudenbush & Bryk, 2002) found that this institutional variability related to the average early-

college STEM course taking among institutions’ non-STEM majors. In both the NLSF and Project 

TALENT samples, STEM joining rates were higher at institutions where non-STEM majors took 

more early college STEM courses (Table S3; Table S4). In both samples, the between-institution 

and within-institution relationships were similar in magnitude (see Supplemental Materials 

available online for information on how the variables were centered for between-institution 

analyses). The between-institution relationship was not statistically significant for the NLSF 

sample perhaps because of the small level-2 sample size (28 institutions), but was significant for 

the Project TALENT sample (see Tables S3 and S4 in the supplemental materials available online).  
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Further accounting for self-selection effects. Further analyses tested whether self-

selection could have plausibly accounted for the course-taking results that controlled for 

potential confounds (e.g., results in Figure 5B). With correlational data, multiple methods and 

converging results are needed to rule out alternative explanations (Ichino et al., 2008). Four 

additional results, described in depth in Table S6, provided such evidence; we summarize these 

results below. Each result by itself had notable limitations, but using multiple methods 

collectively helps to balance the strengths and limitations of each approach.  

Self-selection clearly explained some variance in undergraduate STEM course taking, but 

Results 1–3 in Table S6 collectively provided some evidence that the magnitude of this selection 

effect was likely small among non-STEM intenders taking STEM courses early in college. Self-

selection due to observed pre-college variables was small among non-STEM intenders (Result 

1). For instance, in the NLSF sample, advanced STEM course taking in high school weakly 

predicted STEM course taking early in the first semester of college, r = .07, 95% CI [.02, .13]. In 

contrast, these same variables were stronger predictors of STEM course taking among undecided 

students (Result 2). Hence, self-selection effects could be smaller among initial non-STEM 

majors than other students (e.g., undecided students). Moreover, compared to pre-college 

variables, institutional factors explained more variance in first-STEM course taking among initial 

non-STEM majors (Result 3). This institutional variability likely reflected in part the effects of 

some factors other than self-selection (e.g., such as course taking policies and availability of 

STEM courses for non-majors). Self-selection into early-college STEM courses was therefore 

likely small among undergraduates intending a non-STEM major, even if self-selection in other 

populations (e.g., undecided students) or other points in time (e.g., high school) could be larger 

(Maltese & Tai, 2011). Finally, sensitivity analyses showed that these causal estimates were 
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robust to plausible unobserved confounders (Result 4); only hidden biases of implausibly large 

magnitudes would have substantially reduced causal estimates (e.g., by 50% or more).  

Multiple methods and converging results therefore provided evidence against alternative 

explanations regarding self-selection. Each result by itself had notable limitations (e.g., results 

from multiple regression were limited by the range of observed variables), but the results 

collectively strengthened each other. For instance, simulation analyses (Result 4) provided some 

evidence for robustness to unobserved variables. Although covariates did not seem to account for 

our course-taking results, some covariates still independently predicted STEM joining. For 

instance, STEM joiners had more advanced pre-college STEM backgrounds compared to other 

students who initially intended a non-STEM major. In the BPS sample, 49% of STEM joiners took 

calculus in high school compared to 25% of other initial non-STEM majors (p < .001).  

Summary. Taking STEM courses early in college robustly predicted STEM joining. 

STEM course taking was more important than grades. Multiple causal inference methods provided 

evidence that self-selection likely could not account for the course-taking results, though some 

caution should still be urged given the correlational nature of these data. 

What Is The Impact Of Widening Joining Pathways? 

 This section estimates (a) the national prevalence of STEM joining and (b) the potential 

implications of increasing STEM joining rates using the BPS sample.   

Prevalence of STEM joining. Among students who initially intended a non-STEM 

major in spring 2004, 6.8% later earned a STEM bachelor’s degree by 2009, 95% CI [5.7%, 

7.9%], excluding non-degree earners3. This low joining rate of ~7% meant that some other fields 

                                                
3 The STEM joining rate was 3.9%, 95% CI [3.3%, 4.5%], including non-degree earners. For further details on the 
effects of including non-degree earners, see this interactive website: https://d-miller.shinyapps.io/joiningSTEM/ 
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were more effective at replenishing their supply of majors. For instance, social science and 

STEM fields had equally high attrition rates (Chen & Soldner, 2013) but distinctly different rates 

of replenishment. For every student who switched out of social science, 1.9 students entered 

from another discipline. This ratio is reversed in STEM fields: one student entered STEM for 

every 1.5 students who switched out. Plugging leaks (decreasing attrition) or widening joining 

pathways (increasing joining) could change this replenishment rate. But importantly, STEM 

fields typically have lower attrition rates than non-STEM fields (Chen & Soldner, 2013). The 

U.S. therefore suffers from a net loss of STEM graduates because of infrequent STEM joining, 

not because of an especially leaky pipeline in STEM compared to non-STEM fields.  

Addressing workforce needs. A small increase in the STEM joining rate could 

substantially help the U.S. meet projected needs for more STEM graduates. For instance, we 

estimated that increasing the joining rate by just 5 percentage points would generate between 26,000 

to 63,000 more STEM graduates per year, depending on the definition of potential STEM joiners 

(see Figure 7 for further details). Placing these numbers in context, a 2012 report to the President 

estimated that the U.S. needs to produce 100,000 more STEM graduates per year to match projected 

STEM workforce growth (PCAST, 2012). Hence, increasing joining rates by just 5 percentage 

points would generate between one-quarter to nearly two-thirds of these projected needs.  
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Figure 6. The effects of increasing STEM joining rates by 5% on the number of STEM graduates 

per year. Estimates based on BPS data (see Table S7 for more details). 

Addressing gender disparities. Increasing STEM joining among women could substantially 

increase their representation in STEM. Men and women were equally likely to join life science from 

a non-STEM field (p = .190), but men were 2.8 times as likely as women (p < .001) to join other 

STEM fields such as physical science and engineering (pSTEM). In one hypothetical scenario, 

increasing women’s pSTEM joining rate to match men’s would generate 38% more female graduates 

in these male-dominated fields (Figure 8). As shown in Figure 8, equalizing gender differences in 

entering pSTEM from being undecided would have an even larger effect. But these initially 

undecided students were ambiguous as discussed earlier (see Participant Selection Criteria).  

Gender differences in pSTEM retention were marginal. Among initial pSTEM majors who 

later earned bachelor’s degrees, women were less slightly likely than men to persist in pSTEM 

(59% vs. 70%, respectively, p = .089). However, closing this persistence gap – the focus of many 

current efforts – would have little effect on degrees earned, as Figure 8 shows. For instance, 

women currently earn 25% of the U.S.’s pSTEM bachelor’s degrees, and “plugging” the leaky 
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pSTEM pipeline for female undergraduates would only increase this percentage to 27% (see also 

Xie & Shauman, 2003). Closing the persistence gap would have little effect because few women 

intend a pSTEM major (e.g., women were fourteen times as likely to intend a non-STEM than 

pSTEM major). The gender gap in undergraduate retention only explained 5% of the gap in 

earning pSTEM bachelor’s degrees, whereas the gap in joining explained 19% of the gap in 

earning degrees. Finally, pre-college factors such as intentions in high school contribute even more 

to the later gap in bachelor’s degrees (Ceci et al., 2014; Legewie & DiPrete, 2014).  

 

Figure 7. The effect of equalizing gender differences in undergraduate STEM transitions on the 

number of female STEM bachelor’s degree earners per year (excluding life science). Estimates 

based on BPS data (see Table S7 for more details). 

Summary. Increasing STEM joining rates could potently help address STEM workforce 

needs and gender disparities in STEM.  
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Discussion 

Aligning with broader literature on emerging adulthood (Arnett, 2000), results showed that 

college students frequently explore academic identities, regardless of initial major. Roughly one-

fifth of STEM graduates came from initial non-STEM majors, demonstrating the multifaceted 

pathways for joining STEM. These joiners started with similar high school STEM preparation 

compared to “leaks” in the pipeline (i.e., STEM switch-outs), but then achieved similar 

undergraduate success compared to STEM persisters (e.g., on-time graduation rates were equal). 

Joiners came from diverse non-STEM fields and took more non-STEM courses than persisters did 

throughout college. Future research should investigate whether this interdisciplinary training could 

be an asset for jobs at the intersection of technology and society. For instance, innovation at 

companies like Facebook and Google not only requires technical expertise but also an 

understanding of what people want and need (PCAST, 2012). These results collectively 

demonstrate the multiple pathways, not a singular pipeline, to STEM success. 

The pipeline metaphor focuses important attention on STEM retention, but unfortunately 

away from more comprehensive strategies for broadening participation in STEM. For instance, 

compared to “plugging the leaky pipeline,” closing the gender gap in undergraduate joining would 

more potently increase women’s representation in pSTEM. Yet many psychological studies and 

theories often overlook this large, important source of potential female STEM majors. Stereotype 

threat research, for instance, often uses pre-study surveys to exclude undergraduates who do not 

already strongly identify with mathematics (e.g., Murphy, Steele, & Gross, 2007).  

Results showed how studying STEM joiners can modify conclusions about what 

psychological factors are most important to pursuing STEM. Much prior research has pointed to 

the importance of performance in introductory STEM courses, in particular. The harsh grading 
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standards and demanding work in those courses are thought to create self-doubt, driving students 

away from STEM (see Ceci et al., 2014 for a review). This so-called “fear of the B-,” however, 

seems to only apply to STEM retention, not joining. All three samples spanning diverse 

institutions consistently showed that STEM grades weakly predicted joining, despite strongly 

predicting retention. In fact, STEM joiners earned an average of 0.26 grade points lower in their 

first-year STEM courses, compared to non-STEM courses. These results suggest asymmetries in 

the psychological processes that facilitate STEM joining versus retention. Analogous to broader 

literature on social identity threat (e.g., Murphy et al., 2007), we suspect that low STEM course 

performance may less threatening to those that do not already identify with the domain (i.e., 

initial non-STEM majors). Nevertheless, joiners may find STEM subjects intrinsically interesting 

or important to future career prospects, consistent with expectancy-value theory (Eccles, 2011). 

Future research should test such hypotheses. 

In contrast to grades, simply taking STEM courses early in college was crucial for joining 

STEM years later. Institutional differences in such course taking even helped to explain why some 

institutions had particularly high joining rates. These results remained after controlling for several 

theoretically relevant covariates and replicated across three nationally representative sample spanning 

four decades and diverse institutions. Multiple methods for causal inference helped to rule out self-

selection effects, though experimental methods would more definitely rule out alternative 

explanations. Results indicated one potential mechanism for these early-college effects: they 

initiative recursive feedback loops that unfold throughout college (Walton, 2014). In particular, first-

semester STEM course taking mattered because it predicted course taking in the next two semesters. 

This subsequent course taking mediated the predicted effect of first-semester courses on STEM 

joining. In other words, taking STEM courses early in college could allow students to start travelling 
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pathways that later lead to earning STEM degrees. Not all students will choose to travel such 

pathways, but taking relevant courses in a timely manner could create opportunities to do so. These 

results emphasize that that successfully joining STEM during college requires persistence in paths 

that later lead to STEM degrees. Studying joiners could therefore help provide a more multifaceted 

understanding of STEM persistence (cf. Graham et al., 2013; Watkins & Mazur, 2013).  

Educators and policy makers can build on our findings to develop cost-effective actions 

for broadening participation in STEM. In particular, redesigning course requirements could 

widen these joining pathways. For instance, the University of Notre Dame requires that all 

students take two mathematics courses in the first year and two science courses by the end of the 

second year (University of Notre Dame, 2012). Several other institutions have STEM course 

requirements for all majors, but often do not specify when these courses must be taken 

(American Council of Trustees and Alumni, 2014). To facilitate STEM joining, university 

administrators could consider redesigning graduation requirements as early-college 

requirements. Redesigning the timing of such requirements could be done even without 

increasing the total number of undergraduate STEM requirements. Future research can build on 

our findings to identify specific course-taking policies that would most effectively take 

advantage of undergraduate entry points into STEM. Educators could also inexpensively 

redesign these introductory courses to make them more inviting to diverse students. Highlighting 

how scientific research involves working with and helping others could particularly encourage 

women to join STEM fields, for instance (Diekman et al., 2011; Valla & Ceci, 2014). However, 

we remain neutral whether the gender gap in STEM joining can be fully closed in reality, 

especially if factors such as different interests contribute to that gap (Ceci et al., 2014). 
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In conclusion, students who begin college in a non-STEM field can bring valuable 

interdisciplinary perspectives into STEM. However, the story of a singular STEM pipeline has 

directed thought away from leveraging this currently untapped pool of diverse talent. Studying 

the multiple pathways to STEM can help enrich understanding of when psychological factors 

such as grades and expectations contribute to students’ academic decisions. In contrast to grades, 

simply taking STEM courses early in college was crucial to STEM joining, even after controlling 

for many theoretically relevant covariates. Policy makers and educators can therefore likely 

widen these joining pathways by increasing the quantity and quality of STEM courses that non-

STEM majors take early in college.  
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Chapter 3: Pathways for Joining the Computing and Engineering Workforce 

As discussed in the previous chapter, postsecondary educators and policymakers have 

called for an increase in the national supply of STEM college graduates to help meet projected 

STEM workforce growth. Part of this demand comes from the assumption that STEM jobs require 

STEM degrees. For instance, the National Science Board (2018) noted that STEM jobs “are 

generally assumed to require at least a bachelor’s degree level of education in [a science or 

engineering] field” (p. 3-12). However, contrary to these common assumptions, nationally 

representative data show that STEM employers often hire workers without STEM degrees. For 

instance, in 2015, approximately 1.2 million STEM workers were college graduates without a 

bachelor’s degree or higher in any STEM field (National Survey of College Graduates, 2015). 

They were one-fifth (20%) of the total college-educated STEM workforce in 2015, excluding 

social science4. Many workers with non-STEM degrees therefore already pursue STEM careers, 

indicating the openness of pathways for joining STEM even after graduating college.  

Despite lacking formal STEM degrees, these workers may have gained technical skills 

through informal learning experiences such as gradually taking on technical job tasks (e.g., 

database administration) in non-STEM jobs (e.g., marketing analysts). In contrast, research 

publications (e.g., Cannady et al., 2014) and policy reports (e.g., PCAST, 2012) that discuss 

STEM careers typically emphasize the importance of formal postsecondary degrees but overlook 

informal learning experiences. Consequently, employers are left with little guidance from 

scholarly research on how to best train and manage the over one million college-educated STEM 

workers without STEM degrees. To address this critical gap in prior literature, I analyzed the 

                                                
4 These statistics were based on NSF’s classification scheme of STEM jobs (National Science Board, 2018), which 
was modified for this study to exclude social science jobs for consistency with Study 1. 
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2015 National Survey of College Graduates (NSCG) to describe the pathways for joining STEM 

careers among college graduates without STEM degrees. The NSCG was a large national probability 

sample (n = 91,000) representative of college graduates who lived in the United States in 2015. In 

addition to characterizing joiners’ jobs (e.g., how joiners used their non-STEM training), this study 

examined how workers’ goals to benefit society related to decisions to pursue STEM employment. 

My analyses focused on two large employment fields: computing and engineering. These 

two subfields were the largest ones under the broad category of STEM employment, collectively 

accounting for 78% of the college-educated STEM workforce and 88% of the college-educated 

pSTEM workforce in 2015 (National Survey of College Graduates, 2015). These fields were also 

important to study because they were more gender imbalanced than other STEM fields such as 

chemistry and mathematics (Cheryan, Ziegler, Montoya, & Jiang, 2017). Disaggregating results 

by specific STEM fields was appropriate because the educational requirements for entry-level 

jobs varied greatly by field. For instance, STEM joiners were far more common in the computer 

science than engineering workforce, as described in more detail later in this chapter. Analyzing 

STEM jobs as one aggregate category would have instead masked this variation by field. 

This study considered how joiners used their non-STEM training in these fields. For instance, 

software developers often work in large teams to develop products that will be later marketed to 

consumers (Highsmith & Cockburn, 2001). Non-technical skills such as communication and 

organizational skills might therefore help these developers collaborate in teams and design profitable 

products. Consistent with this reasoning, in a nationally representative sample in 2016, software 

applications developers (n = 30) rated the following interpersonal and organizational activities as 

important to job performance: communicating with supervisors, peers, or subordinates; organizing, 

planning, and prioritizing work; coordinating the work and activities of others; developing objectives 
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and strategies; establishing and maintaining interpersonal relationships (National Center for O*NET 

Development, 2018). The importance of all these activities was rated above the midpoint (i.e., 

“important”) on a 1-5 scale ranging from “not important” to “extremely important.”  

More broadly, business-related skills are especially relevant because for-profit businesses 

employ most STEM workers (National Science Board, 2018). For instance, in 2015, 78% of 

computer scientists and 77% of engineers worked in the for-profit business/industry sector 

(National Survey of College Graduates, 2015). The need for non-technical skills may therefore be 

one reason why some STEM employers often hire workers with non-STEM degrees. The NSCG’s 

questions were well suited to study how joiners used their non-STEM degrees. For instance, one 

set of questions asked about time spent on work activities such as “sales, purchasing, marketing” 

and “supervising people or projects” that might have leveraged joiners’ non-STEM skills. 

Respondents also rated how related their job was to their highest degree, allowing me to examine 

joiners’ perceptions of using their non-STEM training in computing and engineering careers.  

Furthermore, the NSCG survey enabled me to study psychological factors that may have 

influenced employment decisions. For instance, one question asked respondents to rate the 

importance of “contribution to society” when “thinking about a job.” Workers who valued 

benefiting society may have avoided computing and engineering if they saw those fields as lacking 

opportunities to help others (Diekman, Steinberg, Brown, Belanger, & Clark, 2017). I therefore 

investigated how the goal of benefitting society related to employment outcomes. Prior research 

has studied how communal goals to work with or help others has predicted career interests in 

STEM (for a review, see Boucher, Fuesting, Diekman, & Murphy, 2017). This research, however, 

has often been limited to convenience samples of psychology undergraduates and has not studied 
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actual employment outcomes. To my knowledge, my study is the first to use nationally 

representative data to examine how communal goal endorsement relates to STEM employment. 

Theoretical Framework 

Goal Congruity Perspective 

Americans have often perceived computer science and engineering as fields that do not 

provide opportunities to work with or help others. In one U.S. study of students in an introductory 

psychology course (n = 333), undergraduates perceived STEM jobs such as computer scientist and 

mechanical engineer to fulfill communal goals less than other jobs (Diekman, Brown, Johnston, & 

Clark, 2010). STEM jobs were viewed as lacking communal opportunities even when compared to 

male-stereotypic, non-STEM jobs such as lawyer and architect. These findings on perceived 

communal goal affordances have been replicated and extended in later research (Diekman et al., 

2011; Matskewich & Cheryan, 2016; see Boucher et al., 2017 for a review). Computer scientists 

and engineers instead have often been seen as “nerdy, socially awkward men who love science 

fiction and video games” (Boucher et al., 2017, p. 2). 

 Given these perceptions, individuals who value communal goals such as helping others 

may opt out of computer science and engineering careers. Diekman et al.’s (2017) goal congruity 

perspective hypothesizes that communally oriented individuals may avoid these fields because 

they anticipate goal incongruity – a mismatch between their personal goals and perceived career 

opportunities. These considerations are important for both women and men because both sexes 

share the basic psychological needs for relatedness and belonging (Diekman et al., 2017, p. 147). 

However, women also typically endorse communal goals more strongly than men (e.g., Konrad, 

Ritchie, Lieb, & Corrigall, 2000; Su, Rounds, & Armstrong, 2009). This sex difference in 
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communal goal endorsement may help partly explain the low numbers of women in computing 

and engineering careers (Cortes & Pan, 2017; Su & Rounds, 2015). 

Joining Versus Persistence Pathways 

Based on this goal congruity perspective, communal goal endorsement should negatively 

predict working in computer science or engineering among college graduates without STEM 

degrees. Such workers have limited exposure during formal education to the type of work 

opportunities available in computing and engineering. Consequently, they may base their career 

decisions on culturally shared stereotypes that portray those fields as not affording communal 

opportunities. Workers without STEM degrees may therefore avoid computing and engineering 

even if those fields offer ways to help others (i.e., even if those stereotypes are inaccurate). 

Communal goal endorsement might also negatively predict persistence (e.g., engineering 

graduates working in engineering) if communally oriented workers struggle to find ways to help 

others in computing and engineering careers. For instance, among workers sampled for the 

nationally representative O*NET database, computer scientists and engineers rated caring for 

others as only somewhat important to job performance (National Center for O*NET 

Development, 2018). The average importance rating for “assisting and caring for others”5 was 

2.07 for computer scientists (n = 525) and 2.17 for engineers (n = 1,014) on a 1-5 scale ranging 

from “not important” to “extremely important”; the value of 2 corresponded to “somewhat 

important.” In contrast, the average rating for all U.S. workers was 2.86 (n = 26,829). Other 

fields such as medicine or teaching therefore might be more attractive to communally oriented 

computer science and engineering graduates (Croft, Schmader, & Block, 2015). 

                                                
5The survey defined assisting and caring for others as “providing personal assistance, medical attention, emotional 
support, or other personal care to others such as coworkers, customers, or patients.” 
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Nevertheless, several factors might attenuate the effect of communal goals on persistence 

from STEM degrees to STEM jobs. For instance, despite stereotypes suggesting otherwise, 

computing and engineering jobs could offer many ways to help others (e.g., using machine 

learning to improve non-profits’ organizational practices, mentoring colleagues). The O*NET 

database finds that computer scientists and engineers must often give expert advice to others as 

part of their job. These workers rated the following activities as important to job performance 

(i.e., above the midpoint on a 1-5 scale): providing consultation and advice to others; training 

and teaching others; interpreting the meaning of information to others (National Center for 

O*NET Development, 2018). Communally oriented computer scientists and engineers therefore 

may not experience goal incongruity given these varied ways to help others in their jobs. 

Furthermore, even if workers experience incongruity at first, they might align their jobs with 

their goals over time through role reconstruction (e.g., negotiate different working conditions) or 

role reconstrual (e.g., mentally reframe the nature of their work), as Diekman et al.’s (2017) goal 

congruity perspective would predict. For instance, even if an engineer struggles to find ways to 

directly help others, that person could think about how engineering benefits society more distally 

and contributes to economic growth; this thought process is an example of role reconstrual 

(Diekman et al., 2017, p. 145). Considering why STEM workers engage in tasks such as conducting 

scientific experiments could also help workers think of their jobs’ broader implications to society. 

Consistent with this hypothesis, one recent study (n = 193) found that prompting participants to 

explain why, rather than how, scientists conduct experiments increased participants’ tendency to say 

that science careers could fulfill communal goals (d = 0.42; p = .003; Steinberg & Diekman, 2018). 

The processes of role reconstruction and reconstrual might buffer against the effects of experienced 

incongruity, leading communally oriented STEM workers to persist in their careers.  
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Consistent with these hypotheses, most computer scientists (76%) and engineers (86%) in 

2015 said they were somewhat or very satisfied with their job’s contribution to society (National 

Survey of College Graduates, 2015). This satisfaction could reflect both the communal opportunities 

available in computing and engineering jobs as well as role reconstruction and reconstrual processes. 

This Study’s Hypotheses 

I therefore predicted that wanting to help others would negatively relate to joining the 

computer science and engineering workforce (i.e., working in those fields without a STEM 

degree). In contrast, I had less strong predictions for whether communal goal endorsement would 

relate to persistence (e.g., working in computer science with a computer science degree), for 

reasons described earlier. One exploratory hypothesis was that communal goal endorsement 

would relate to persistence, but to a lesser extent than for joining.  

I investigated these hypotheses using workers’ valuing of contributing to society when 

thinking about a job. Workers also rated the importance of other career considerations such as 

“intellectual challenge” and “opportunities for advancement.” These other responses helped me 

identify the unique link between communal goal endorsement and career decisions, controlling for 

other factors such as agentic goals (i.e., wanting to promote interests of the self, rather than others).  

In addition, I estimated the national impact of these goal pursuit processes on the U.S. 

STEM workforce. Using methods described in the next section, I quantified how many more 

college graduates would have been computer scientists and engineers if communally oriented 

workers had pursued those fields at the same rate as other workers. These impact analyses were 

possible because the NSCG was a large national probability sample, permitting precise 

estimation of population sizes and nationally representative employment rates. 
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Method 

The 2015 NSCG survey was a stratified national probability sample (n = 91,000) whose 

target population was individuals who lived in the United States in February 2015, had at least a 

bachelor’s degree, were under 76 years of age, and were not institutionalized (see 

https://nsf.gov/statistics/srvygrads/). Survey questions asked about respondents’ employment 

situation, principal employer, principal job, certifications and licenses, past employment, other 

work-related experiences, educational experiences, and demographic information (see 

https://www.nsf.gov/statistics/srvygrads/surveys/srvygrads-returnrespond2015.pdf). Individuals 

with STEM jobs and STEM degrees were oversampled.  

Jobs and Degrees 

Occupational field. The NSCG survey asked respondents to “choose the code that best 

describes the principal job you held during the week of February 1, 2015” and provided a list of 

specific job categories such as “database administrators” and “mechanical engineers.” 

Postsecondary STEM teachers and professors were considered STEM workers, consistent with 

NSF’s classification scheme of STEM jobs (National Science Board, 2018). However, precollege 

STEM teachers, managers (e.g., “engineering managers”), and technologists and technicians 

(e.g., “surveying and mapping technicians”) were excluded, meaning that NSF’s classification 

scheme provided a somewhat conservative definition of STEM workers. This study focused on 

workers who NSF classified as computer and information scientists (e.g., “information security 

analysts” and “computer support specialists”) and engineers (e.g., “mechanical engineers”). 

Educational degrees. The survey asked respondents to list information about all degrees 

that respondents earned at the bachelor’s level or higher, but did not ask about associate’s 
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degrees. Respondents were considered potential joiners if they did not earn any degree at the 

bachelor’s level or higher whose major field of study or second major was a pSTEM field. 

Other Survey Questions 

Work activities. The survey asked, “which of the following work activities occupied at 

least 10 percent of your time during a typical work week on [your principal job]?” and listed 

activities such as “computer programming, systems or applications development” and “design of 

equipment, processes, structures, models.” 

Job’s relationship to highest degree. One question asked, “to what extent was your 

work on your principal job related to your highest degree?” and provided three options: (1) 

closely related, (2) somewhat related, and (3) not related. 

Career goals. The survey also asked, “when thinking about a job, how important is each 

of the following factors to you?” and listed nine goals: (1) salary, (2) benefits, (3) job security, (4) 

job location, (5) opportunities for advancement, (6) intellectual challenge, (7) level of 

responsibility, (8) degree of independence, and (9) contribution to society. Respondents were 

given four response options for each goal ranging from “not important at all” to “very important.”  

Definition of Joiners and Persisters 

For this study, the term “joiners” referred to college-educated computer science or 

engineering workers with no bachelor’s degree or higher in a pSTEM field. This definition 

included life and social science graduates because those fields were distantly related to the more 

math-intensive fields of computing and engineering (Ceci et al., 2014); analysis of the NSCG’s 

question about job’s relationship to highest degree also supported this conclusion. In contrast, 

physical science and mathematics graduates were excluded because those fields were more 

closely related to computing and engineering. Joiners were a larger percentage of the college-
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educated computer science workforce (32%) than engineering workforce (9%), indicating the 

career pathways were more open for joining computing than engineering. Persisters were defined 

as computer science or engineering workers who earned their highest degree in the same field 

(e.g., computer science persisters earned their highest degree in computer science). Based on this 

definition, persisters were 78% of engineers and 40% of computer scientists.  

These definitions of joiners and persisters excluded other categories of workers (e.g., 

computer scientists with mathematics degrees) who were 28% of computer scientists and 12% of 

engineers. For instance, 19% of computer scientists earned their highest degree in engineering. 

These more ambiguous cases were excluded because those workers switched fields, but their 

highest degree was still highly related to their job. In addition, these definitions were based on 

degrees earned at the bachelor’s level or higher, though some workers also had professional 

certifications and licenses. For instance, 18% of computer science joiners and 27% of engineering 

joiners had a formal professional certification or a state or industry license to work in their job; 

these percentages were 14% for computer science persisters and 25% for engineering persisters. 

Analytic Strategy 

NSF-created inverse probability survey weights were used in all analyses to adjust for 

unequal sampling probabilities and nonresponse bias. Consistent with the previous chapter, the 

analyses were organized around three guiding research questions about STEM joining pathways: 

•� Descriptive: Who are computer science and engineering joiners in terms of their work 

activities, job’s relationship to highest degree, and detailed job category? Joiners were 

compared to persisters (e.g., engineering graduates working in engineering) and other 

workers on these dimensions for descriptive comparison. 
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•� Correlational: What predicts STEM joining? More specifically, does communal goal 

endorsement relate to employment in computing or engineering among workers without 

STEM degrees? Does this relation remain after controlling for other factors such as 

agentic goals and does it also emerge for predicting persistence? 

•� National impact: What is the potential national impact of widening joining pathways? 

For instance, how many more computer scientists and engineers would potentially come 

from communally oriented workers joining those fields at the same rate as other workers?  

Descriptive analyses used simple percentages to compare joiners to other workers. Correlational 

analyses used logistic regression to examine how communal goal endorsement related to the log 

odds of working in computing or engineering versus other careers. Multivariable logistic regression 

models estimated the unique link between communal goal endorsement and employment by 

controlling for eight other career goals (see previous subsection) and demographics.  

Demographic variables included in multivariable models were sex (0 = female; 1 = 

male), marital status (0 = not married; 1 = married), family status (0 = not living with children; 1 

= living with children), parents’ highest level of education (0 = no college-educated parent; 1 = 

at least one parent with a bachelor’s degree or higher), U.S. citizenship (0 = non-citizen; 1 = U.S. 

citizen), number of years since earning respondents’ highest degree, highest degree type (three 

dummy codes to distinguish bachelor’s, master’s, professional, and doctorate degrees), and 

race/ethnicity (three dummy codes for being African American, Asian, or Hispanic). 

Lastly, impact analyses considered different hypothetical scenarios such as communally 

oriented workers joining computing and engineering at the same rate as other workers. These 

analyses used survey weight sums to estimate the size of different populations such as 

communally oriented U.S. workers without pSTEM degrees. For the NSCG, a respondent’s 
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survey weight was the approximate number of people who that respondent represented in the 

population (see https://nsf.gov/statistics/srvygrads/). Hence, sums of these survey weights 

provided estimates of population sizes (e.g., NSF has often estimated the size of the STEM 

workforce using NSCG survey weight sums; National Science Board, 2018, Chapter 3). 

Results 

Who Are STEM Joiners? 

 My first analytic goal was to understand who joiners are by characterizing their work 

activities, job’s relationship to highest degree, and detailed job category. These descriptive 

analyses used persisters and other workers as comparison populations. 

Work activities. Figure 8 compares the work activities of computer science and 

engineering joiners (left and middle red bars) to computer science persisters (blue bars), 

engineering persisters (green bars), and other workers with no pSTEM degree (right red bars).  

One central finding was that joiners spent somewhat less time than persisters on the two 

key STEM activities of computer applications and design (see the top two panels in Figure 8). 

For instance, 63% of computer science joiners spent at least 10% of their time during a typical 

work week on “computer programming, systems or applications development,” compared to 

87% of computer science persisters. Similarly, 51% of engineering joiners spent at least 10% of 

their work time on “design of equipment, processes, structures, models,” compared to 70% of 

engineering persisters. Nevertheless, as also shown in Figure 8, joiners spent far more time on 

these STEM activities than their counterparts with no pSTEM degree not working in computer 

science or engineering (compare to right red bars).  
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Figure 8. The percentage of workers who spend at least 10 percent of their time during a typical 

work week on different activities. These activities include (a) “computer programming, systems 

or applications development,” (b) “design of equipment, processes, structures, models”, (c) 

“managing or supervising people or projects,” (d) “sales, purchasing, marketing, customer 
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service, public relations,” (e) “quality or productivity management,” and (f) “accounting, 

finance, contracts.” Error bars represent standard errors. 

Another key finding from Figure 10 was that joiners spent somewhat more time than 

persisters on non-STEM activities such as management and marketing (see panels c-f). For instance, 

30% of computer science joiners spent at least 10% of their time during a typical work week on 

“sales, purchasing, marketing, customer service, public relations,” compared to 12% of computer 

science persisters (panel d). Joiners also spent substantially more time than persisters on “quality or 

productivity management” and “accounting, finance, contracts” activities (panels e and f). 

Job’s relationship to highest degree. One potential explanation for the work activity 

results was that joiners selected work activities that leveraged their formal non-pSTEM training. 

Consistent with this hypothesis, most computer science joiners (63%) and engineering joiners 

(85%) said their work on their principal job was “closely related” or “somewhat related” to their 

highest degree, even though that degree was in a non-pSTEM field. This percentage was 

especially high among computer science joiners (84%) and engineering joiners (91%) whose 

highest degree was in business; this result suggests that many joiners used business skills such as 

team management and marketing in computing and engineering jobs. Such business skills would 

be relevant for the for-profit technology and engineering companies that commonly employ 

computer scientists and engineers. Like persisters, most joiners in computer science (71%) and 

engineering (81%) worked in the for-profit business/industry sector.  

Detailed job category. Table 1 shows the detailed job categories of computer science 

joiners and persisters which provided another way to characterize joiners’ jobs. Compared to 

persisters, joiners worked less often in the programming-intensive jobs of computer software 

engineer and software developer, consistent with joiners spending less time on programming 
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activities (Figure 10a). Joiners instead worked more often in the less programming-intensive jobs 

of computer support specialist and database administrator. However, rates of working in several 

other roles such as computer system analyst and network systems administrator did not 

significantly differ between joiners and persisters. 

Table 1 

Detailed Job Category of Computer Science Persisters and Joiners 

 Persisters  Joiners   
Computing job category M (%) SE  M (%) SE  p 

Computer engineers - software 24.8 1.6  5.7 1.1  <.001 
Software developers - applications and systems software 24.7 1.6  14.2 1.6  <.001 
Computer system analysts 11.8 1.2  13.6 1.6  0.362 
OTHER computer and information science occupations 7.8 1.0  20.8 1.9  <.001 
Network and computer systems administrators 7.2 1.0  7.1 1.2  0.936 
Computer support specialists 7.0 0.9  13.1 1.6  <.001 
Web developers 4.6 0.8  11.2 1.5  <.001 
Database administrators 3.3 0.7  9.4 1.4  <.001 
Information security analysts 3.1 0.6  1.8 0.6  0.161 
Computer & information scientists, research 2.6 0.6  1.4 0.6  0.137 
Computer network architect 2.2 0.5  0.9 0.4  0.046 
Postsecondary Teachers: Computer Science 0.8 0.3  0.8 0.4  0.999 

 

Table 2 compares the detailed job categories of engineering joiners versus persisters based 

on their detailed job category. Joiners were less likely than persisters to work as mechanical or 

electrical engineers, but more likely to work as sales engineers or other engineers. These findings 

align with the work activity results presented earlier; for instance, joiners working more often as 

sale engineers aligns with them spending more time than persisters on “sales, purchasing, 

marketing, customer service, public relations.” Rates of working in several other roles such as 

civil and industrial engineer did not significantly differ between joiners and persisters. 
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Table 2 

Detailed Job Category of Engineering Persisters and Joiners 

 Persisters  Joiners   
Engineering job category M (%) SE  M (%) SE  p 

Mechanical engineers 21.8 7.3  7.0 2.5  0.055 
Electrical and electronics engineers 18.9 6.9  3.7 1.9  0.035 
Civil, including architectural/sanitary engineers 15.4 6.4  14.3 3.5  0.883 
OTHER engineers 8.6 5.0  23.6 4.2  0.021 
Aeronautical/aerospace/astronautical engineers 5.6 4.1  2.0 1.4  0.399 
Chemical engineers 5.2 3.9  0.9 0.9  0.286 
Industrial engineers 4.2 3.6  9.7 3.0  0.238 
Postsecondary Teachers: Engineering 3.5 3.3  1.2 1.1  0.494 
Sales engineers 3.5 3.3  15.0 3.6  0.018 
Environmental engineers 3.0 3.0  7.5 2.6  0.269 
Computer engineer - hardware 2.9 3.0  8.3 2.8  0.188 
Materials and metallurgical engineers 1.9 2.4  1.5 1.2  0.890 
Nuclear engineers 1.7 2.3  0.8 0.9  0.723 
Bioengineers or biomedical engineers 1.5 2.2  1.4 1.2  0.979 
Petroleum engineers 0.9 1.7  1.4 1.2  0.813 
Marine engineers and naval architects 0.6 1.4  0.8 0.9  0.929 
Agricultural engineers 0.4 1.1  0.7 0.8  0.807 
Mining and geological engineers 0.3 1.0  0.3 0.5  0.967 

 

Summary. In summary, compared to persisters, joiners spent somewhat less time on 

STEM work activities such as applications development and more time on non-STEM work 

activities such as marketing and finance. These differences may reflect that joiners choose work 

activities that leveraged their non-STEM educational training. Joiners with business degrees 

were especially likely to say that their job was somewhat or closely related to their educational 

training. In other words, business skills may be especially relevant to success in computing and 

engineering, consistent with the goals of for-profit technology and engineering companies. The 

differences in work activities were also reflected in the detailed job categories. 

What Predicts STEM Joining? 

Next, I sought to study how communal goal endorsement related to pathways for joining 

computing and engineering among workers without pSTEM degrees (n = 44,864). These workers 

generally cared about the societal implications of their work; most rated “contribution to society” as 
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somewhat important (36%) or very important (55%) when thinking about a job. Only a minority said 

that contributing to society was somewhat unimportant (7%) or not at all important (2%). Hence, 

most of these workers (91%) were communally oriented, which I defined as selecting the somewhat 

or very important option; this definition was used throughout this study’s analyses.  

Computer science joining. As expected, communal goal endorsement negatively related 

to joining the computing workforce (see Figure 9). For instance, communally oriented workers 

(i.e., rated contribution to society as somewhat or very important) were 52% less likely to join the 

computing workforce than other workers without pSTEM degrees (2.2% vs. 4.6%; p < .0001). The 

extent of goal endorsement even mattered among communally oriented workers. Workers who 

rated contribution to society as “very important” joined the computing workforce 60% less often 

than workers who selected the “somewhat” important option (1.4% vs. 3.5%; p < .0001). 

 

Figure 9. Computer science joining rates by communal goal endorsement among workers 

without pSTEM degrees (n = 44,864). Error bars represent 95% confidence intervals. 
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Engineering joining. Workers without pSTEM degrees were much more likely to join the 

computing than engineering workforce (2.4% vs. 0.4%, on average). Nevertheless, communal goal 

endorsement also negatively related to joining engineering (see Figure 10). Among workers 

without pSTEM degrees, those who rated contribution to society as “very important” joined 

engineering 64% less often than workers who selected the “somewhat” important option (0.2% 

vs. 0.7%; p < .0001). As a combined group, these communally oriented workers were collectively 

43% less likely to join the engineering workforce than other workers without pSTEM degrees 

(0.4% vs. 0.7%), though that difference was not statistically significant (p = .060).  

 

Figure 10. Engineering joining rates by communal goal endorsement among workers without 

pSTEM degrees (n = 44,864). Error bars represent 95% confidence intervals. 

Regression models. Logistic regression analyses further extended these results. For 
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odds of joining the computing workforce (b = -0.54; p < .0001) and a 40% decrease for joining the 

engineering workforce (b = -0.51; p < .0001). Multivariable analyses estimated the unique link 

between communal goal endorsement and employment by controlling for 20 other predictors (i.e., 

8 other career goals and 12 demographic variables; see “Analytic Strategy” in the Methods 

section). Even after controlling for these other predictors, communal goal endorsement continued 

to significantly relate to joining the computer science workforce (b = -0.54; p < .0001), though not 

the engineering workforce (b = -0.22; p = .077). The left side of Figure 11 summarizes these 

logistic regression analyses for predicting joining the computer science and engineering workforce. 

 

Figure 11. Regression coefficients for communal goal endorsement predicting joining and 

persistence in computer science and engineering. The coefficients represent the average change 

in log odds in working in computer science or engineering per unit increase in communal goal 

endorsement (e.g., rating contribution to society as “somewhat unimportant” vs. “somewhat 

important”). Error bars represent 95% confidence intervals. 
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Predicting persistence. The right side of Figure 11 shows the results for predicting 

persistence (e.g., predicting computer science employment among workers whose highest degree 

was in computer science). Those results were based on workers whose highest degree was in 

computer science (n = 4,656) or engineering (n = 16,755).  

The regression coefficients were generally smaller in magnitude for predicting persistence 

than joining. For instance, among workers whose highest degree was in computer science, each 

unit increase in communal goal endorsement predicted an average 25% decrease in the odds of 

computer science employment (b = -0.29; p = .0004). This coefficient for predicting persistence 

was significantly smaller in magnitude (p = .008) than for predicting computer science joining (b 

= -0.54; p < .0001). For engineering employment, the regression coefficient was also significantly 

smaller in magnitude (p < .0001) for predicting engineering persistence (b = -0.10; p = .034) than 

joining (b = -0.51; p < .0001). However, the differences in persistence versus joining coefficients 

were no longer significant in multivariable models (p = .102 for computing; p = .128 for 

engineering), perhaps due to the greater imprecision of regression coefficients in those models. 

These results regarding persistence can also be interpreted by comparing communally 

oriented workers (who rated contribution to society as somewhat or very important) to other 

workers. For instance, among computer science graduates, communally oriented workers were 

13% less likely to work in computer science than other workers (58% vs. 67%; p = .019). In 

contrast, among non-pSTEM graduates, communally oriented workers were 52% less likely to 

join the computing workforce than other workers (2.2% vs. 4.6%). Communal goal endorsement 

therefore tended to predict the odds of employment outcomes more strongly for joining than 

persistence pathways in computer science and engineering. 
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Sex differences. Consistent with prior research (e.g., Konrad et al., 2000; Su et al., 2009), 

women endorsed communal goals more strongly than men. For instance, among workers without 

pSTEM degrees, 61% of women rated contribution to society as “very important,” compared to 

48% of men (p < .0001). In addition, 95% of women were communally oriented (i.e., selected the 

somewhat or very important option), compared to 87% of men (p < .0001). Hence, most women 

and men cared about the societal implications of their work, but women did so more than men. I 

therefore examined whether sex moderated the predicted effect of communal goal endorsement.  

Exploratory moderation analyses generally found that communal goal endorsement 

related to employment outcomes more strongly for women than men. For instance, communal 

goal endorsement related to joining the computing workforce more strongly for women (b = -0.74; 

p < .0001) than men (b = -0.34; p < .0001). This difference in regression coefficients was 

statistically significant (i.e., sex significantly interacted with goal endorsement when predicting 

computer science employment; p = .0001). For instance, communally oriented women joined the 

computing workforce 68% less often than other women without pSTEM degrees (1.4% vs. 4.3%; 

p < .0001). In contrast, communally oriented men joined computing only 29% less often than 

other men (3.4% vs. 4.8%; p = .019). The regression coefficients for predicting joining the 

engineering workforce were also larger in magnitude for women (b = -0.56; p = .044) than men 

(b = -0.31; p = .0009), though this difference was not significant (p = .402). In addition, the 

coefficients for predicting computer science and engineering persistence tended to be larger in 

magnitude for women than men, though these differences were not significant (ps > .13). 

Communal goal endorsement therefore tended to matter as a psychological consideration 

somewhat more for women than men. Nevertheless, most men still valued contributing to society, 

which negatively predicted their employment in computing and engineering. Among men, 
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communal goal endorsement negatively related to computer science joining (b = -0.34; p < .0001), 

engineering joining (b = -0.31; p = .0009), and computer science persistence (b = -0.18; p = 0.049), 

though not engineering persistence (b = -0.08; p = .115). In other words, despite sex differences, 

communal goal endorsement still mattered for both women and men. 

These sex differences in communal goal endorsement also helped interpret sex differences in 

joining the computing and engineering workforce. Among workers without pSTEM degrees, women 

were 57% less likely than men to work in computer science (1.5% vs. 3.6%; p < .0001) and 84% less 

likely to work engineering (0.1% vs. 0.8%; p < .0001); see Figure 12. Women were 56% of workers 

without pSTEM degrees, but only 35% of computer science joiners and 18% of engineering joiners. 

 

Figure 12. Sex differences in computer science and engineering employment among workers 

without pSTEM degrees (n = 44,864). Error bars represent 95% confidence intervals. 
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important.” Among those workers who were not communally oriented, women were only 10% 

less likely than men to work in computer science (4.3% vs. 4.8%; p = .690) and 61% less likely to 

work in engineering (0.4% vs. 0.9%; p = .264). Neither of those sex differences were significant, 

though the lack of statistical significance might also reflect the reduced sample size of workers 

without pSTEM degrees who were not communally oriented (n = 3,131). 

As noted earlier, the interaction between sex and communal goal endorsement was 

significant for predicting computer science employment (p = .0001). That interaction also meant 

that the sex difference in joining computer science was significantly smaller among less 

communally oriented workers. In other words, women and men joined the computing workforce 

at more equal rates among workers who said contributing to society was less important (e.g., 

compare the left vs. right side of Figure 13). 

 

Figure 13. Sex differences in joining computer science by communal goal endorsement. The left 

side represents data from workers without pSTEM degrees who rated contribution to society as 

“somewhat unimportant” or “not at all important” (n = 3,131) and the right side represents 
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workers who selected the “somewhat important” or “very important” options (n = 41,733). Error 

bars represent 95% confidence intervals. 

Summary. In summary, communal goal endorsement negatively related to joining 

computing and engineering, based on analysis of nearly 45,000 workers without pSTEM 

degrees. For instance, communally oriented workers were 52% less likely to join the computing 

workforce than other workers. Simple and multivariable logistic regression models showed this 

relation was empirically robust with only one exception (i.e., the multivariable model for 

engineering; p = .077). In contrast, communal goal endorsement related less strongly to the odds 

of persistence than joining (e.g., among computer science graduates, communally oriented 

workers were only 13% less likely to work in computer science than other workers).  

Goal endorsement also tended to relate to employment outcomes more strongly for women 

than men, though this difference was only significant for predicting computer science joining 

(p = .0001). Conversely, the sex difference in computer science joining was smaller among less 

communally oriented workers. Despite sex differences, most men also valued contributing to 

society, which negatively related to men’s employment in computing and engineering. 

What is the National Impact of Widening Joining Pathways? 

The results presented so far suggest that communally oriented workers avoided computing 

and engineering careers more often than other workers. In this section, I estimated the national 

impact of these fields’ apparent lack of attractiveness to these workers who valued helping others.  

Analytic approach. Given its precisely defined sampling frame, the nationally 

representative NSCG survey allowed me to quantify how many more college graduates would 

have been computer scientists and engineers in different hypothetical scenarios. For instance, as 
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noted earlier, 2.2% of communally oriented workers without pSTEM degrees were computer 

scientists in 2015. Analyses considered the national impact of raising this joining rate from 2.2% 

to 4.6%, which was the computer science joining rate for other workers without pSTEM degrees. 

This percentage point difference was multiplied by the estimated population size of communally 

oriented U.S. workers without pSTEM degrees (see “Analytic Strategy” in the Methods section) 

to estimate the number of additional computer scientists in this scenario. The numbers in the 

following paragraphs strictly reflected college graduates because the NSCG survey only sampled 

people living in the United States in 2015 who had earned a bachelor’s degree or higher. 

Computer science employment. Impact analyses found that an additional 820,000 

college graduates would have been computer scientists if communally oriented workers had 

joined computer science as often as other workers without pSTEM degrees. This change would 

have increased the size of the U.S. college-educated computing workforce by 29% in 2015. This 

large increase comes in part from the large population size of communally oriented workers 

without pSTEM degrees, which was estimated to be 34.4 million in 2015. Given this large pool 

of potential joiners, increasing communally oriented workers’ joining rate from 2.2% to 4.6% 

had a large estimated population effect (over 800,000 more computer scientists), even though the 

change in percentage point units (2.4 points) was small. 

In contrast, compared to closing the joining gap, closing the persistence gap between 

communally oriented versus other workers would have yielded fewer computer scientists. 

Among communally oriented workers who earned their highest degree in computer science, 62% 

persisted by working in computer science in 2015. Increasing this persistence rate to 73%, the 

rate for other computer science graduates, would have generated an additional 140,000 computer 
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scientists. In other words, closing the joining gap would have generated 5.9 times as many 

computer scientists as closing the persistence gap.  

The joining gap was more consequential than the persistence gap because potential 

joiners far outnumbered potential persisters. For instance, among communally oriented workers, 

an estimated 34.4 million had no pSTEM degree, but only 1.62 million had earned their highest 

degree in computer science. In other words, communally oriented potential joiners outnumbered 

communally oriented potential persisters by a ratio of 21 to 1. Consequently, closing the joining 

gap mattered more, even though the percentage point change in computer science employment 

was smaller for potential joiners (2.2% to 4.6%) than potential persisters (62% to 73%). The left 

side of Figure 14 summarizes these impact analyses for computer science employment. 

 

Figure 14. Impact analyses for increasing computer science and engineering employment rates 

among communally oriented workers. The grey bars represent estimated workforce sizes in 2015. 

The blue bars represent the number of additional workers generated if communally oriented 

workers had joined computer science and engineering as often as other workers without pSTEM 
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degrees. The red bars represent analogous results for persistence (e.g., if communally oriented 

engineering graduates had worked in engineering as often as other engineering graduates).  

 Engineering employment. The right hand of Figure 14 repeated these impact analyses for 

engineering employment. The engineering joining rate was 0.4% for communally oriented 

workers, compared to 0.7% for other workers without pSTEM degrees. As shown in Figure 14, 

closing this engineering joining gap would have had a smaller national impact than closing the 

computer science joining gap (compare the blue bars). If communally oriented workers had joined 

engineering as often as other workers without pSTEM degrees, an additional 105,000 college 

graduates would have been engineers, which would have increased the size of the engineering 

workforce by 6% in 2015. The joining gap was smaller in percentage point units for engineering 

(0.4% vs. 0.7%) than computer science (2.2% vs. 4.6%) and therefore also less consequential for 

engineering. In addition, the right red bar in Figure 14 shows results for engineering persistence. 

Among the 3 million communally oriented workers who earned their highest degree in 

engineering, 37% persisted by working in engineering in 2015, compared to 44% for other 

engineering graduates. Closing this persistence gap would have yielded 200,000 more engineers. 

 Sex differences in computer science employment. Impact analyses for computer science 

employment were repeated separately for women and men because of the sex differences 

identified earlier (e.g., sex interacted with communal goal endorsement when predicting computer 

science joining). For instance, the computer science joining rate was 1.3% for communally 

oriented working women, compared to 4.3% of other working women without pSTEM degrees. 

Analyses estimated the impact of closing such gaps separately for women and men. 
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Figure 15. Impact analyses separated by sex for increasing computer science employment rates 

among communally oriented workers. The grey bars represent estimated workforce sizes in 

2015. The blue bars represent the number of additional workers generated if communally 

oriented workers had joined computer science as often as other workers without pSTEM degrees. 

The red bars represent analogous results for persistence.  

  Figure 15 displays results for these sex-disaggregated impact analyses. Perhaps the most 

striking result is that closing the joining gap for women would have nearly doubled the number of 

female computer scientists. More than an additional half million women (588,000) would have been 

computer scientists if communally oriented women had joined the computer science workforce as 

often as other women without pSTEM degrees. This change would have increased the number of 

U.S. female computer scientists by 84% in 2015. In contrast, closing the joining gap for men would 

have yielded far fewer male computer scientists (195,000). In this scenario of closing the joining 
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increased from 24.5% to 35.4% in 2015. Lastly, closing the persistence gap would have also 

produced even fewer male and female computer scientists (67,000 and 60,000, respectively). 

 Summary. In summary, impact analyses suggested that the United States would benefit from 

many more computer scientists if communally oriented workers found computing more attractive. 

An additional 820,000 college graduates would have been computer scientists if communally 

oriented workers had joined computer science as often as other workers without pSTEM degrees. 

Sex-disaggregated results showed that most of these additional computer scientists would have been 

women. The number of female computer scientists would have nearly doubled if communally 

oriented women had joined computing as often as other women without pSTEM degrees. 

 In contrast, compared to closing the joining gap, closing the persistence gap between 

communally oriented versus other workers would have yielded far fewer computer scientists 

(140,000). This result reflects that potential joiners (i.e., college graduates without pSTEM degrees) 

far outnumbered potential persisters (i.e., computer science graduates). Consequently, communal 

goal pursuit appears to matter far more in practical terms for joining than retention pathways in 

computing. Lastly, results also indicated differences between computing and engineering. Closing 

the joining gap would have yielded far fewer engineers (105,000) than computer scientists (820,000), 

reflecting that workers without pSTEM degrees joined engineering far less often than computing. 

Discussion 

This study used the nationally representative NSCG survey to characterize pathways for 

joining the computing and engineering workforce among college graduates without pSTEM 

degrees. By focusing on computing and engineering, this study answered research questions with 

field-specific granularity while still accounting for most (78%) of the college-educated STEM 

workforce in 2015. Descriptive analyses provided insight on what joiners did in their jobs, and 
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analyses focused on communal goals helped reveal psychological considerations potentially 

important to individuals’ career decisions. 

Job Characteristics 

Descriptive analyses suggested that many computer science and engineering joiners used 

their educational training by working on non-STEM job tasks such as finance and management at 

higher rates than persisters. Joiners with business degrees were especially likely to say that their job 

was related to their educational training, despite joiners lacking computer science or engineering 

degrees. This result could reflect that business knowledge and skills are important to success in 

computing and engineering careers, especially considering that for-profit companies employ most 

workers in these fields (National Science Board, 2018). In contrast, joiners spent somewhat less time 

than persisters on STEM job tasks such as applications development and equipment design. These 

work activity results were also reflected in the detailed job categories (e.g., computer science joiners 

worked as computer software engineers less often than computer science persisters). 

The differences between joiners and persisters, however, were modest compared to the larger 

differences between joiners and other workers without pSTEM degrees. For instance, 63% of 

computer science joiners spent at least 10% of their job on “computer programming, systems or 

applications development,” compared to 10% of other workers without pSTEM degrees (the 

percentage for computer science persisters was 87%). In other words, joiners did not work only in 

jobs with a trivial demand for STEM skills (e.g., joiners did not work only in customer service roles). 

For instance, only a minority of both computer science joiners (13%) and computer science persisters 

(7%) worked as computer support specialists. Future research should therefore study how joiners 

learned their technical skills, despite lacking formal pSTEM degrees at the bachelor’s level or higher. 
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Goal Pursuit Processes 

In addition to characterizing joiners’ jobs, my analyses provided the first nationally 

representative study of how communal goal endorsement relates to STEM employment. Results 

clearly indicated the importance of goal pursuit processes, especially for joining the computer science 

workforce. For instance, among non-pSTEM college graduates, workers who rated benefitting 

society as somewhat or very important were 52% less likely to join the computing workforce than 

other workers. If these communally oriented workers had joined computing as often as other 

workers, over 800,000 more college graduates would have been computer scientists in 2015. These 

claims about national impact were justified because the NSCG was a large national probability 

sample, allowing me to estimate population sizes and nationally representative employment rates. 

In multiple ways, communal goal pursuit processes mattered more for joining than 

persistence pathways in computing. First, communal goal endorsement predicted the log odds of 

computer science employment more strongly among non-pSTEM graduates than computer 

science graduates. This result could have reflected communally oriented computer scientists 

persisting in their careers by finding opportunities to help others or engaging in role 

reconstruction and reconstrual processes, as noted in the introduction. Furthermore, goal pursuit 

mattered more for joining than persistence pathways in practical terms as well. Communally 

oriented non-pSTEM graduates (i.e., potential joiners) outnumbered communally oriented 

computer science graduates (i.e., potential persisters) by a ratio of 21 to 1. Consequently, even 

small changes in joining rates could generate many more computer scientists. Impact analyses 

showed that, compared to closing the persistence gap, closing the joining gap between 

communally oriented versus other workers would have yielded 6 times as many computer 
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scientists. In other words, both theoretically and practically, communal goal endorsement was 

more important for computer science joining than persistence pathways. 

In contrast, the importance of communal goal endorsement was more mixed for engineering 

than computer science joining pathways. Non-pSTEM graduates worked in engineering far less 

often than computing overall (0.4% vs. 2.4%), indicating the pathways were less open for joining 

engineering than computer science. Given these base rates, the differences between communally 

oriented versus other non-pSTEM graduates mattered less for the engineering than computer 

science workforce. Nevertheless, communal goal endorsement still predicted large decreases in the 

log odds of joining engineering (see Figure 11). In other words, communal goal pursuit appeared to 

still be an important psychological consideration for joining engineering, even though those pursuit 

processes had a comparatively small impact on the number of engineers in the United States. 

Sex Differences 

Consistent with prior research (e.g., Konrad et al., 2000), women valued benefitting 

society more than men in the NSCG sample. Variation in communal goal endorsement also 

related to the log odds of computer science joining more strongly for women than men. 

Furthermore, increasing joining rates among communally oriented non-pSTEM graduates would 

have mainly generated more female, rather than male, computer scientists. If communally 

oriented women had joined computing as often as other women, the number of female computer 

scientists would have almost doubled in 2015. Communal goal pursuit processes therefore were 

more important for women than men when joining computer science. 

These sex differences in goal pursuit can help interpret sex differences in joining rates. 

For instance, women were overall 57% less likely than men to join computing, but this sex 

difference was not significant among the subset of workers who rated benefitting society as 
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unimportant. The sex difference in joining computing was significantly smaller among less 

versus more communally oriented workers (p = .0001). In other words, women and men joined at 

more equal rates when pursuit of communal goals was a less important psychological 

consideration. These results therefore add to other evidence that sex differences in goal pursuit 

processes may contribute to women’s underrepresentation in computer science (Cortes & Pan, 

2017; Diekman et al., 2017; Su & Rounds, 2015). For instance, if communally oriented women 

and men had joined computing as often as other women and men, women’s representation 

among computer scientists would have increased from 25% to 35% in 2015. 

The contribution of goal pursuit processes to women’s underrepresentation in engineering 

careers was less clear from this study. For instance, the interaction between sex and communal 

goal endorsement was not significant for predicting engineering joining (p = .402), though it was 

significant for computer science joining (p = .0001). This result might reflect statistical 

limitations because joining engineering was a rare event, which could have compromised power 

for detecting interactions. Regardless, the sex difference in engineering joining had limited 

impact on aggregate gender diversity in engineering because joining rates were so low. Goal 

pursuit processes could still impact diversity in engineering by limiting the number of women 

who earn engineering degrees before entering the workforce (Diekman et al., 2017). However, 

studying such pre-workforce pathways was beyond the scope of this study, and datasets included 

in Study 1 of my dissertation did not measure communal goals. 

Despite sex differences, goal pursuit also mattered for men. For instance, among non-

pSTEM graduates, most men rated contributing to society as somewhat important (40%) or very 

important (48%). Variation in communal goal endorsement also negatively related to men’s 

employment in computer science and engineering. For instance, an additional 195,000 men would 
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have been computer scientists if communally oriented men had joined computing as often as other 

men without pSTEM degrees. In other words, wanting to benefit society also related to men’s 

employment outcomes, even though women valued that career goal more on average. 

Limitations 

 Several limitations of this research should be noted. First, this study’s cross-sectional, 

correlational design limits causal claims about the effect of communal goal endorsement on 

employment outcomes. For instance, reverse causation is possible; computer scientists and 

engineers may have disengaged from their goals if they could not find ways to help others in 

their jobs. Hence, employment outcomes could influence communal goal endorsement, which 

could reflect available career opportunities. This alternative explanation is unlikely because 

communal goals are often fundamental motives that may be difficult to abandon (Diekman et al., 

2017). Nevertheless, longitudinal data are needed to evaluate this hypothesis. 

Second, this study’s measurement of communal goals was limited to a single item that asked 

respondents to rate the importance of “contribution to society” when “thinking about a job.” 

Respondents may have interpreted the term “contribution to society” in different ways given this 

vague wording. In contrast, other surveys like O*NET’s often provide concrete definitions of 

terms such as describing “assisting and caring for others” as “providing personal assistance, 

medical attention, emotional support, or other personal care to others such as coworkers, 

customers, or patients” (National Center for O*NET Development, 2018). Furthermore, the 

NSCG item measured only one goal (i.e., benefitting society), but not other communal goals 

such as working with others or directly helping others through face-to-face interactions. A battery 

of communal goal items should therefore be used to study employment outcomes in future research. 
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However, in defense of my findings, items that measure different communal goals have 

correlated strongly in prior research (e.g., Diekman et al., 2010). 

Third, another limitation was that the NSCG survey measured a narrow range of 

psychological attributes. For instance, one important construct to include in future employment 

research would be goal affordance stereotypes (i.e., perceptions that computing and engineering jobs 

offer communal opportunities). Based on prior research (e.g., Diekman et al., 2010), I assumed that 

workers without pSTEM degrees generally viewed computing and engineering jobs as lacking in 

ways to help others, but I was unable to directly test this assumption for this NSCG sample. Variation 

in affordance stereotypes could have helped better characterize the underlying psychological 

considerations leading to individuals’ career decisions. Nevertheless, despite such limitations, the 

NSCG measured some other psychological attributes such as career goals for wanting intellectual 

challenge and opportunities for advancement. These other items helped me estimate the unique link 

between communal goal endorsement and employment outcomes, controlling for other attributes. 

Implications for Employers 

This study provides STEM employers with knowledge on recruiting workers with non-

STEM degrees and leveraging those workers’ educational training. This knowledge is particularly 

important for computer science employers (e.g., technology companies) given the openness of 

pathways for joining the computing workforce after college. For instance, non-pSTEM college 

graduates were roughly one in three (31%) college-educated computer scientists in 2015. In 

contrast, this percentage was much smaller for college-educated engineers (9%). 

For-profit technology companies might see joiners’ non-technical skills such as 

communication and organizational skills as an asset for enhancing business outcomes (e.g., profit). 

Consistent with this hypothesis, joiners spent more time than persisters on some non-STEM tasks 
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such as management and finance. Nevertheless, questions remain about how joiners developed 

their technical skills. Employers may be hesitant to hire non-pSTEM graduates as computer 

scientists because on-the-job training programs for learning programming skills could be costly. 

However, joiners could have also learned computing skills by gradually taking on technical tasks 

(e.g., database administration) in non-STEM jobs, easing the burden on computer science 

employers. Future research should examine such possibilities to inform employers’ decisions. 

Computer science employers should also be aware that, based on my study, computing 

careers appear to be unattractive to workers who value benefitting society. This finding is 

concerning because a clear majority of non-pSTEM graduates rated contributing to society as 

somewhat important (36%) or very important (55%) when thinking about a job. If these 

communally oriented workers had joined computing as often as other workers, the college-

educated computer science workforce would have been 29% larger in 2015, holding all other 

factors constant. My analyses did not address whether employers could have accommodated or 

needed so many more computer scientists, but these results nevertheless illustrate the potential 

importance of joining pathways for addressing workforce needs (National Science Board, 2018). 

Employers therefore may want to consider how to highlight the communal aspects of 

computing careers to potential employees. For instance, experimental studies could test how 

variations in job advertisements (e.g., emphasizing the importance of interpersonal skills or not) 

could change communally oriented workers’ interest in applying. This research would be 

valuable especially considering that computer scientists often rate interpersonal activities such as 

providing advice to others and communicating with peers as important to job performance 

(National Center for O*NET Development, 2018). In other words, computing jobs appear to 

offer ways to work with and help others, despite stereotypes suggesting otherwise. 
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Chapter 4: Conclusions and Implications for STEM Education and Workforce Needs 

My dissertation found that the educational and career trajectories for becoming scientists 

and engineers in the United States are far more varied and complex than commonly assumed. For 

instance, nearly one fifth of STEM graduates started college as a non-STEM major, and one fifth 

of college-educated STEM workers had no postsecondary degree in any STEM field. Many 

college students and working adults therefore already have joined STEM fields from non-STEM 

backgrounds. Further widening these joining pathways could offer educators and employers new 

strategies for broadening the national supply of workers with STEM skills. These late entry 

points into STEM are particularly important for increasing gender diversity, given the large pool 

of women who start college as a non-STEM major and graduate with non-STEM degrees.  

Despite illustrating these opportunities, my analyses also identified barriers that could 

limit access to these pathways for joining STEM. In Study 1, undergraduates were unlikely to 

later join STEM if they had not taken a high number of STEM courses early in college (e.g., less 

than two STEM courses in students’ first semester in college). In Study 2, computing and 

engineering careers appeared to be unattractive to non-STEM graduates who valued benefitting 

society. Joining STEM during or after college is therefore not always a straightforward process 

given the structural barriers (e.g., course requirements) and psychological barriers (e.g., 

stereotypes about the nature of work in the field) that could impede late entry into STEM. 

Educators, employers, and policymakers therefore may want to consider how to overcome these 

obstacles through targeted interventions such as modifying course-taking policies for non-STEM 

majors and communicating how STEM careers offer ways to work with and help others.  

My dissertation identified these opportunities and challenges by organizing analyses into 

three guiding research questions: (a) who are STEM joiners? (b) what predicts STEM joining? 
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(c) what is the potential national impact of widening joining pathways? By investigating these 

questions, I aimed to develop foundational knowledge that could inform future studies on 

policies and interventions for leveraging the diverse entry points into STEM. My research 

informs both educational and employment practices because I studied both the transitions from 

beginning of college to graduation and college graduation to the workforce.  

Key insights from both studies suggested that (a) joiners’ interdisciplinary training could be 

an asset for STEM careers that often require social and organizational skills in a business context; 

(b) taking STEM courses early in college and wanting to benefit society were robust predictors of 

STEM joining; and (c) even small changes in STEM joining rates could generate many more 

STEM graduates and workers. These results advance theoretical models of individuals’ pursuit of 

STEM majors and careers as well as suggest new practical strategies for solving workforce needs. 

Integrating Results Across Studies 

Who Are STEM Joiners? 

One overarching conclusion from both studies was that STEM joiners retained aspects of 

their non-STEM backgrounds and training in their ongoing education and work. Compared to 

STEM persisters, joiners took more non-STEM courses throughout college (Study 1) and worked 

more often on non-STEM job activities such as finance and management (Study 2). One 

hypothesis for these results is that joiners had a broader array of interests and skills than 

persisters (Valla & Ceci, 2014; Wang et al., 2013). Joiners had demonstrated a strong prior 

interest in at least one non-STEM field (e.g., by starting college as a non-STEM major) and 

therefore may have retained that interest even after formally transitioning into STEM majors and 

careers. In contrast, persisters may have spent their education and careers honing their skills 

more narrowly in a single technical discipline like mechanical engineering or biology. 
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Joiners’ broad educational training could be an asset for STEM careers because those 

careers often require strong communication and organizational skills in a business context 

(National Center for O*NET Development, 2018). Consistent with this hypothesis, most non-

STEM graduates who worked in computing (63%) or engineering (85%) said that their job was 

somewhat or closely related to their non-STEM educational training. In other words, based on 

workers’ self-reports, joiners appeared to use their non-STEM training in their technical jobs.  

Nevertheless, joiners’ educational training might have also been a liability because joiners 

had fewer learning experiences than persisters to develop technical skills. Joiners’ comparatively 

weaker STEM preparation therefore might have threatened their educational and career success 

(Kokkelenberg & Sinha, 2010). Results from Study 1, however, did not support this concern 

empirically for postsecondary education outcomes. Joiners and persisters did not significantly 

differ in terms of undergraduate STEM course performance and rates of graduating college on 

time (i.e., within four years), even though joiners had less high school STEM preparation than 

persisters. In other words, joiners achieved similar undergraduate success in STEM compared to 

persisters. Nevertheless, the career success of joiners is still largely unknown because Study 1 

only examined educational outcomes and Study 2 did not have measures of job performance. 

Future research should therefore extend my dissertation by studying employers’ evaluations of 

joiners’ job performance and the pathways for non-STEM graduates to learn technical skills. 

What Predicts STEM Joining? 

My dissertation identified potential points of intervention by examining structural and 

psychological factors that predicted STEM joining. These analyses did not intend to definitively 

test the causal impact of specific policies and programs but instead aimed to rigorously identify 

promising directions for future intervention research. Based on my results, two variables 
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emerged as consistently predictive of later STEM joining: (a) taking STEM courses early in 

college and (b) wanting to benefit society. The first positively predicted later earning of STEM 

bachelor’s degrees among non-STEM majors (Study 1) and the second negatively related to 

working in computing and engineering among non-STEM graduates (Study 2). These results 

remained after controlling for several theoretically relevant covariates such as high school STEM 

preparation and other career goals such as wanting opportunities for advancement. 

Postsecondary educators and policymakers therefore should study how early college STEM 

course-taking could create opportunities for non-STEM majors to later join STEM. For instance, 

future research could examine how to widen STEM joining pathways by redesigning institution-

wide graduation requirements as early-college requirements (e.g., requiring all undergraduates to 

take a mathematics course in their first college semester). Increasing the quantity and quality of 

STEM courses that non-STEM majors take early in college could create opportunities for those 

students to develop interests in STEM and satisfy the course requirements for becoming STEM 

majors (Eccles, 2011; Merolla et al., 2012). Furthermore, employers should consider how to 

highlight the communal opportunities available in computing and engineering careers to potential 

job applicants, building on prior experimental studies with undergraduates (see Diekman et al., 2017 

for a review). As an example, future experiments could study how emphasizing the importance of 

interpersonal skills in STEM job advertisements might encourage non-STEM graduates to apply. 

In addition to identifying these practical implications, my dissertation demonstrated how 

studying STEM joining can modify and enrich theories about what psychological factors are 

most important to pursuing STEM (e.g., Diekman et al., 2017; Eccles, 2011). Results suggested 

asymmetries in the psychological processes that lead to STEM joining versus persistence. In 

Study 1, grades earned in introductory undergraduate STEM courses weakly predicted later 
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STEM joining, despite strongly predicting persistence among initial STEM majors. In Study 2, 

the career goal of benefiting society strongly and negatively related to computing and 

engineering employment among non-STEM graduates, despite relating more weakly to 

persistence (e.g., computer science graduates working in computing). 

Both of these asymmetries in predicting joining versus persistence have implications for 

psychological theory. The results regarding grades are particularly interesting given the harsh grading 

standards and demanding work in introductory undergraduate STEM courses that could create self-

doubt, driving students away from STEM (see Ceci et al., 2014 for a review). Consistent with this 

hypothesis, introductory STEM course grades have been a robust predictor of STEM persistence 

among students starting college as a STEM major (e.g., Chen & Soldner, 2013). But students who 

started college as a non-STEM major appeared to be much more resistant to the self-doubt that might 

come from mediocre grades in these so-called “weed out” classes. Only particularly poor STEM 

grades (GPA < 2.00) predicted a decline in rates of later joining STEM. In fact, STEM joiners earned 

an average of 0.26 grade points lower in their first-year STEM courses than non-STEM courses, but 

still decided to major in STEM anyway. One hypothesis is that below average STEM course 

performance may be less threatening to those that do not already identify with the domain, consistent 

with broader literature on social identity threat (e.g., Murphy et al., 2007). 

In addition, the results regarding communal goals (i.e., benefitting society) suggest distinct 

goal pursuit processes in the joining versus persistence pathways that lead to computer science and 

engineering employment. For joining pathways, non-STEM graduates likely base career decisions 

on cultural stereotypes that portray computing and engineering careers as not offering communal 

opportunities (see Diekman et al., 2017 for a review). Such workers have limited direct exposure to 

the career opportunities available in those jobs. In contrast, for persistence pathways, computer 
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science and engineering graduates may realize that employment in those fields offers varied ways 

to work with and help others (e.g., collaborating with colleagues, using data science to advance 

organizational goals). Communally oriented computer science and engineering workers might also 

align their jobs with their goals over time through role reconstruction (e.g., negotiate different 

working conditions) or role reconstrual (e.g., mentally reframe the nature of their work), as 

Diekman et al.’s (2017) goal congruity perspective would also predict. In other words, communal 

goal endorsement may have predicted joining more strongly than persistence because of 

differences in the underlying psychological processes in how workers pursued their career goals.  

These results therefore both advance theoretical models of individuals’ pursuit of STEM 

pathways as well as suggest new practical strategies for meeting workforce needs. Future research 

can build on my dissertation to identify other structural and psychological factors that may be 

important to entry into STEM during college and beyond. For instance, during college, students’ 

mentoring relationships with STEM professors and informal social relationships with peers in 

STEM courses may be critical for non-STEM majors to develop a sense of belonging and identity 

in STEM (Wu & Uttal, 2017). After college, the high-paying job opportunities in STEM careers 

may be attractive to non-STEM graduates who might struggle finding such employment in other 

fields (National Science Board, 2018). My dissertation therefore demonstrates promise for 

studying STEM joining as a programmatic line of future, generative research.  

What is the Impact of Widening Joining Pathways? 

Impact analyses also demonstrated promise for how STEM joining pathways could broaden 

participation in postsecondary education and careers in STEM. One key insight from both studies 

was that even small changes in STEM joining rates could have a large national impact. For instance, 

Study 2 demonstrated the impact of making computer science more attractive to non-pSTEM 
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graduates who valued benefitting society. If communally oriented non-pSTEM graduates had joined 

computing as often as other non-pSTEM graduates (2.2% vs. 4.6%), an additional 820,000 workers 

would have been computer scientists in 2015, which would have increased the size of the computing 

workforce by 29%. Even though the change was small in terms of joining rates (2.4 percentage 

points), the impact on the number of workers was considerable given the large pool of potential 

joiners. Among those who valued benefitting society, non-pSTEM graduates (i.e., potential 

joiners) outnumbered computer science graduates (i.e., potential persisters) by a ratio of 21 to 1. 

These considerations are particularly important for increasing gender diversity in STEM. 

Few women start college and earn degrees in male-dominated STEM fields such as computer 

science and engineering. Standard interventions focusing on increasing women’s persistence in 

pSTEM during college and beyond therefore may have limited impact on gender diversity. In 

contrast, the pool of women who start college and earn degrees in non-STEM fields is much 

larger. For instance, in Study 1, women who started college as a non-STEM major outnumbered 

women who started college as a pSTEM major by a ratio of 14 to 1. Impact analyses found that, 

compared to “plugging the leaky pipeline,” closing the gender gap in undergraduate joining 

would more potently increase women’s representation in pSTEM.  

Furthermore, Study 2’s impact analyses found that closing the gap between communally 

oriented versus other women would have mainly generated more female computer scientists 

through joining rather than persistence pathways. More than a half million more women 

(588,000) would have been computer scientists if communally oriented women had joined 

computer science as often as other women without pSTEM degrees. This increase would have 

nearly doubled the number of female computer scientists in 2015. In contrast, the potential 

increase in gender diversity through persistence pathways was much smaller. Only 60,000 more 
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women would have computer scientists if communally oriented women had persisted as often as 

other women with computer science degrees. In other words, sex differences in communal goal 

pursuit processes appeared to matter more for joining than persistence in computer science. 

These findings indicate that educators, employers, and policymakers should not dismiss 

the importance of STEM joining pathways because the act of joining STEM may seem infrequent 

(e.g., only 1 in 41 workers without pSTEM degrees were computer scientists). These stakeholders 

must consider the large pool of potential joiners when forming policy decisions and designing 

interventions to address workforce needs and increase gender diversity in STEM. As the 

President’s Council of Advisors on Science and Technology argued, much attention has been 

given to “off-ramps” and attrition patterns in STEM, but “equal attention should be given to on-

ramps, multiple routes to enter or re-enter STEM” (PCAST, 2012, p. 31).  

Rethinking Common Assumptions About STEM Education and Employment 

My dissertation’s results collectively show that educators, employers, and policymakers 

should rethink several common assumptions about STEM education and careers in the United 

States. The processes for obtaining STEM degrees have often been viewed as a “pipeline” that 

requires completing key educational milestones such as taking calculus in high school, starting 

college as a STEM major, and persisting until graduation. Furthermore, STEM jobs “are 

generally assumed to require at least a bachelor’s degree of education in [a science or 

engineering] field,” as the National Science Board (2018) noted (p. 3-12). However, as my 

dissertation shows, both of these assumptions are often inaccurate and may direct attention and 

resources away from more comprehensive strategies for broadening participation in STEM. 
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Evaluating the Role of Postsecondary STEM Education 

The results from Study 2 also raise broader questions about the role of postsecondary STEM 

education in meeting workforce needs. For instance, more than one million STEM workers were 

college graduates without any STEM degree at the bachelor’s level or higher. Given this fluidity for 

joining the STEM workforce, are more STEM college graduates even needed to fulfill workforce 

demands? Or can workforce demands instead be met by more non-STEM graduates developing 

technical skills after college? Furthermore, many STEM graduates do not work in STEM careers 

after college. For instance, in Study 2, 40% of working computer science graduates and 62% of 

working engineering graduates were not employed in their educational field of study. Given this rate 

of attrition after college, are efforts to increase the number of STEM graduates justified? 

One answer to these questions is that the need for STEM skills and knowledge in the 

modern U.S. economy extends well beyond jobs formally classified as STEM. For instance, 

marketing analysts are typically categorized as non-STEM business jobs, but their work often 

requires statistical knowledge and data analysis skills (Bidwell, 2014). Physicians and nurses are 

also usually categorized as non-STEM healthcare jobs, but their work heavily relies on life science 

knowledge. Most STEM graduates report using their educational training in their work, despite 

often working in jobs not formally categorized as STEM (National Science Board, 2018). For 

instance, among computer science graduates not formally working in computer science in 2015, 

82% said their job was somewhat or highly related to their highest degree (National Survey of 

College Graduates, 2015). As Noonan (2017) argued in a report for the U.S. Department of 

Commerce, “increased technology in the workplace means that, to handle non-repetitive tasks, 

workers need the critical thinking and technical skills that come with STEM training” (p. 1).  
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In this regard, the U.S. economy still needs more STEM college graduates, even though 

many will work in jobs not traditionally categorized as STEM. Results from Study 1 show that one 

strategy for meeting this need is to create opportunities for non-STEM majors to join STEM during 

college. Joiners’ broad training in both STEM and non-STEM subjects may be in particularly high 

demand because the fastest growing job areas in the United States have required both analytical 

and social skills (Deming, 2017). In contrast, the share of math-intensive jobs requiring only low 

levels of social skills has actually declined from 1980 to 2012 (see Figure IV in Deming, 2017). In 

other words, undergraduate joiners’ interdisciplinary training may be uniquely suited to meet the 

needs of an economy that increasingly relies on both social skills and technological innovation.  

Furthermore, postsecondary educators and policymakers should consider how course 

requirements for non-STEM majors might also give students the skills and knowledge to later 

pursue STEM careers. For instance, in its 2017 report on data science talent, the Business-Higher 

Education Forum (BHEF) recommended to expand the pathways leading to a diverse analytical 

workforce by “teaching foundational [data science and analytics] skills in a broad number of 

degrees” (BHEF, 2017, p. 21). Fitzgerald et al. (2016) recognized the national need for data 

scientists but argued, “there is an even greater need for data-enabled professionals who can 

marry a deep background in a particular field (e.g., engineering or economics) with a strong 

understanding of the application of data science tools” (p. 434). 

Some colleges and universities have already begun exploring how to equip liberal arts and 

business majors with data analytic skills (BHEF, 2016). As an example, Case Western Reserve 

University created an applied data science minor in fall 2014 for majors in a broad variety of fields 

including business, engineering, and health (Fitzgerald et al., 2016). In other words, formal 

postsecondary education will likely still play a pivotal role in preparing the next generation of U.S. 
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workers with technical skills, but colleges and universities must also adapt to the needs of a rapidly 

changing economy. My dissertation suggests that fostering pathways for non-STEM majors to join 

STEM during college may be one viable way to help address these evolving workforce needs. 

Preparing Workers for Lifelong STEM Learning 

Although STEM degrees remain important, the opportunities to develop technical skills 

extend well beyond formal postsecondary education (Risen, 2016). Workers without STEM 

degrees could learn technical skills both through informal experiences (e.g., gradually taking on 

technical job tasks) and formal experiences (e.g., formal on-the-job training, certification 

programs). Online training courses increasingly offer inexpensive ways to develop a wide array of 

technological skills including computer programming, database administration, machine learning, 

and web development (e.g., see https://www.datacamp.com). Consistent with these varied 

learning opportunities, in Study 2, nearly one third (32%) of college-educated computer science 

workers in 2015 had no pSTEM degree at the bachelor’s level or higher. Presumably, these 

computer science joiners had honed their computing skills, in part, after college. Policymakers 

should therefore view STEM education as a lifelong process of developing skills and knowledge 

to thrive in an increasingly technological world; STEM education is not limited to formal training 

in schools and universities (Dierking, Falk, Rennie, Anderson, & Ellenbogen, 2003). 

Fostering lifelong STEM learning is critical especially given the rapid pace at which 

technological advances create changing demands for new types of technical skills and knowledge 

(BHEF, 2017). In other words, the specific computer algorithms and scientific knowledge that 

undergraduates learn today may likely become outdated in one to two decades from now. 

Emerging technologies such as artificial intelligence and robotics can even eliminate the need for 

certain types of jobs, especially those involving performing routine tasks (Autor, 2015). Displaced 
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workers must then adapt to an evolving economy by developing skills that extend beyond their 

formal K-12 and college education. Reflecting these challenges, one of NSF’s current top priorities 

for future investment (i.e., one of its “10 Big Ideas”) is to advance understanding of the “future of 

work at the human-technology frontier” (NSF, 2018, p. 15). This strategic initiative, in part, 

“responds to the pressing societal need to educate and re-educate learners of all ages (students, 

teachers and workers) in [STEM] content areas to ultimately function in highly technological 

environments, including in collaboration with intelligent systems” (NSF, 2017, p. 1). 

These processes of lifelong learning in a changing economy may partly explain the results I 

found regarding the varied pathways into the computing workforce. Many college graduates without 

pSTEM degrees may have pursued computer science employment because they seized opportunities 

for learning about new and emerging technologies in their current job or through other means (e.g., 

online courses). Coupled with this technical training, joiners’ non-STEM educational training could 

have been as asset for launching their new careers, especially given the need for communications 

and interpersonal skills in computing careers (National Center for O*NET Development, 2018). 

These considerations sharply contrast with widespread narratives found in many policy 

discussions (e.g., about the “STEM pipeline”) that assume STEM degrees are almost always needed 

for STEM jobs (National Science Board, 2018, p. 3-12). This assumption overlooks over one million 

STEM workers without STEM degrees and directs attention away from considering the educational 

opportunities after formal postsecondary education. For instance, even though STEM graduates 

obviously remain a vital source of STEM talent, they must still update their knowledge over time to 

learn new advances in technology and scientific knowledge (NSF, 2017). Hence, postsecondary 

STEM education can be viewed as preparation for future learning, which is a term that Bransford 

and Schwartz (1999) first popularized to refer to, “people’s abilities to learn new information and 
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relate their learning to previous experiences” (p. 69). In this respect, joiners and persisters are alike 

because they both continue to learn new skills and knowledge after formal education. 

Conclusions and Implications 

 Students often change majors during college (e.g., Chen & Soldner, 2013), and most 

workers change jobs throughout their careers (e.g., Lyons, Schweitzer, & Ng, 2015). Yet the 

diverse ways for entering STEM majors and careers are often overlooked. My dissertation 

addressed this critical oversight by showing how STEM joining pathways offer novel 

opportunities for meeting workforce needs and broadening participation in STEM.  

Based on Study 1, postsecondary educators and policymakers should evaluate how to 

facilitate STEM joining pathways by increasing the quality and quantity of STEM courses that 

non-STEM majors take early in college. Based on Study 2, employers should consider how to 

communicate to potential applicants, especially non-STEM graduates, that STEM careers offer 

ways to help others. These late entry points also provide new strategies to recruit women into 

STEM fields, especially given that many women start college as non-STEM majors and earn 

non-STEM degrees. For instance, in Study 2, the number of female computer scientists in 2015 

would have nearly doubled if communally oriented women had joined computing as often as 

other women without pSTEM degrees. 

These implications are merely examples of the many ways that the metaphor of STEM 

pathways can broaden thinking and research on developing STEM talent. In contrast, the leaky 

pipeline metaphor has directed attention on plugging “leaks” in the pipeline but away from more 

comprehensive strategies for addressing workforce needs. The pipeline metaphor especially 

constrains gender diversity initiatives because few women start college in male-dominated 

STEM fields such as computer science or engineering. For instance, in Study 1, compared to 
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“plugging the leaky pipeline” for female pSTEM majors, closing gender gaps in pSTEM joining 

would have much more potently increased women’s representation among pSTEM graduates.  

Joiners’ broad training in both STEM and non-STEM fields could be an asset in an 

economy that increasingly relies on both social skills and technological innovation (Deming, 

2017). STEM careers often require strong communications and organizational skills in a business 

context (National Center for O*NET Development, 2018). Consistent with these considerations, in 

Study 2, most joiners said their technical job was somewhat or very related to their non-STEM 

educational training. Hence, in addition to helping address needs for more STEM workers, 

joiners could enrich STEM fields with interdisciplinary perspectives and novel insights gained 

from training in other fields. Further studying the pathways for joining STEM during college and 

beyond offers promise for leveraging this diverse talent that has often been overlooked.  
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Appendix: Supplemental Methods and Results for Study 1 

These supplemental materials provide additional information about the statistical specifications 

about analyses involving multilevel modeling and propensity score analysis in Study 1. 

Longitudinal response rates. Students were excluded if their six-year graduation status 

and/or later major field of study was unknown. This exclusion resulted in longitudinal response 

rates of 82% for the BPS sample, 91% for the NLSF sample, and 69% for the Project TALENT 

samples. The longitudinal response rate was therefore lowest for Project TALENT, but that 

study’s original researchers took steps to address non-response bias. Those researchers estimated 

characteristics of non-respondents by aggressively tracking down randomly selected samples of 

participants who did not respond to the standard mail-in surveys. Researchers used phone interviews 

and credit agencies to locate these initial non-respondents. Final response rates for these initial non-

respondents were high (roughly 70-90%). For more details, see pages 17-19 of Wise, McLaughlin, & 

Steel (1979). STEM joining rates were equal (P = .75) among these special respondents (n = 446) 

and normal mail-in survey respondents (n = 19,316). The relationship between early-college STEM 

course taking and STEM joining was also the same across respondent type (P = .73). Non-

respondent bias therefore likely had a minimal influence on our central results for Project TALENT. 

Regression models for inferential analyses. We used multilevel logistic regression to 

model the dichotomous outcome of earning a STEM or non-STEM bachelor’s degree (Raudenbush 

& Bryk, 2002). Students were modeled as nested within institutions (intraclass correlation = .09 for 

NLSF, assuming a level-1 variance of π2/3; see chapter 14 of Snijders & Bosker, 1999). Mixed-

effects models assumed that students’ log odds of earning a STEM bachelor’s degree, relative to 

earning a non-STEM bachelor’s degree, were combinations of fixed effects of predictor variables 

(e.g., STEM course-taking) and random effects of between-institution heterogeneity. The regression 
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models assumed that the log odds of STEM joining were normally distributed across institutions. 

Based on a multilevel model with no predictor variables, the estimated log odds at an average 

institution in NLSF was -2.40 and the estimated between-institution variance was 0.24. We used the 

xtmelogit and gllamm commands in Stata to obtain model estimates and used adaptive quadrature as 

the estimation algorithm (Rabe-Hesketh & Skrondal, 2008). 

Within- and between-institution relationships for inferential analyses. Predictor 

variables varied both within and between institutions. For instance, in the NLSF sample, 11% of 

the variance in SAT Mathematics scores was between institutions (see intraclass correlations in 

Table S3). We therefore group-mean centered all student-level predictors to control for this 

between-institution variance (Raudenbush & Bryk, 2002). Conceptually, multilevel models with 

group-mean centered predictors will compare students within the same institution and aggregate 

these comparisons across multiple institutions. This approach aligns with recommendations that 

local control participants should be used when estimating causal effects (Shadish, 2011). 

Contrasting the magnitude of within-institution and between-institution relationships can provide 

additional insight. Although NLSF’s small number of institutions (N = 28 institutions) limited 

the precision of between-institution estimates, Project TALENT was ideal because it included 

1,190 four-year institutions (including 762 institutions with five or more participants, 274 

institutions with twenty or more participants, and 86 institutions with fifty or more participants).  

Survey weights for inferential analyses. We used probability survey weights in some 

regression models to estimate coefficients that were approximately representative of the sampled 

undergraduate population (Rabe-Hesketh & Skrondal, 2006). Such weighted regression models 

explicitly addressed the issue of non-equal sampling probabilities (e.g., racial/ethnic minorities were 

oversampled in NLSF such that Asian, Black, Hispanic, and White students were each roughly one 
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quarter of the sample). However, using survey weights presented unique challenges for the NLSF 

sample because the differences in survey weights were large and sample sizes were modest. For 

instance, survey weights for White students were 8.4 times as large as for Black students on 

average. Among STEM joiners, White students were 23% of observed counts but 74% of the sum 

total of survey weights. Hence, weighted models primarily reflected results for the minority of 

White students in the observed sample. This feature meant that weighted models provided less 

precise regression estimates than unweighted models. These concerns were heightened because 

weighting can perform poorly for multilevel logistic regression (Rabe-Hesketh & Skrondal, 2006) 

and sample sizes were modest in some cases (e.g., n = 98 STEM joiners in NLSF, yielding an 

effective sample size of n = 31 when using weights). These sampling design issues were less 

extreme for the BPS and Project TALENT samples.  

Comparing results with and without using survey weights. For the reasons described 

above, we generally placed greater emphasis on unweighted than weighted models when 

analyzing the NSLF sample. Unweighted models can be seen as reflecting the experiences of a 

racially diverse, rather than primarily White, college population. Most importantly, we compared 

the results of unweighted and weighted models to ensure our results were robust. Compared to 

unweighted models (e.g., Model 4 in Table S5), models that weighted by survey weights 

generally showed similar results (e.g., Model 5). Early-college STEM course taking continued to 

predict STEM joining using weights or not. However, for the NLSF sample, the predicted effect 

of first-semester STEM course taking was twice as strong in the weighted than unweighted 

model (bs = 1.00 vs. 0.50, respectively). The difference between models likely reflected the 

moderating influence of race. To test this possibility, we added interaction terms (e.g., ug_STEM 

× Black) to Model 4 to test for a moderating effect of race/ethnicity. We found that first-semester 
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STEM course-taking significantly predicted increases in STEM joining for White (b = 1.15, p = 

.0004) and Asian (b = 0.59, p = .008) students, but not for Black (b = 0.26, p = .23) or Hispanic 

(b = 0.23, p = .31) students. The course-taking effect was significantly greater for Asian/White 

students than Black/Hispanic students (Δb = 0.62, p = .011).  

Hence, even though Black and Hispanic students were as likely as White students to join 

STEM, first-semester STEM course-taking was a less relevant factor for explaining individual 

differences in STEM joining among Black and Hispanic students in NLSF. We did not find this 

same interaction in the BPS sample. In the BPS sample, early-college STEM course taking (the 

percent of first-year credits earned in STEM department) predicted STEM joining among 

Asian/White students (b = 0.054, SE = 0.006, p < .0001) and Black/Hispanic (b = 0.071, SE = 

.03, p = .033) students. The racial/ethnic difference in regression slopes was not significant (p = 

0.62) and was in the opposite direction compared to that for NLSF. The interaction between 

race/ethnicity and course taking might therefore be confined to selective institutions, but sample 

sizes for racial/ethnic minorities were too small in the BPS sample (e.g., n ~ 100 Black/Hispanic 

students starting at selective institutions) to rigorously test this possibility using another dataset. 

The generalizability of the interaction between race/ethnicity and STEM course taking is 

therefore unclear, but this interaction was important when interpreting and comparing the 

unweighted and weighted models for specifically the NLSF sample. 

Conclusion regarding NLSF’s survey weights. The most important result regarding 

weights was that early-college STEM course taking predicted STEM joined with or without them 

(see Table S4). Hence, results for early-college STEM course taking were robust. Unweighted 

models generally yielded smaller estimates of our central treatment effect (i.e., effect of early-college 

STEM course-taking on STEM joining). Unweighted estimates were therefore likely conservative, 



www.manaraa.com

 109 
and focusing on them therefore reduced the possibility of overstating the policy implications of our 

results. In the main text, we reported unweighted estimates for the NLSF sample.  
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Table S1 

Descriptions of variables included in inferential analyses of the NLSF sample (n = 1,108).  

Variable name Description 
Demographic variables 
 male Dummy code for being male.  

(M = 0.36, SD = 0.48, nonresponse rate = 0%, intraclass correlation = .04, correlation with 
first-semester STEM course taking = .01).  
 

 Asian Dummy code for being Asian.  
(M = 0.22, SD = 0.42, nonresponse rate = 0%, intraclass correlation = .01, correlation with 
first-semester STEM course taking = .11). 
 

 Black Dummy code for being Black.  
(M = 0.29, SD = 0.45, nonresponse rate = 0%, intraclass correlation = .11, correlation with 
first-semester STEM course taking = -.04). 
 

 Hispanic Dummy code for being Hispanic.  
(M = 0.25, SD = 0.44, nonresponse rate = 0%, intraclass correlation = .05, correlation with 
first-semester STEM course taking = -.03). 
 

 parent_STEM Dummy code for having at least one parent employed in a STEM 
field one year prior to students’ freshman year.  
(M = 0.11, SD = 0.31, nonresponse rate = 0.8%, intraclass correlation = .00, correlation with 
first-semester STEM course taking = .04). 
 

 SES Composite index of socioeconomic status. Average of z scores for 
parents’ highest level of education (0 = high school degree or lower, 
1 = some college, 2 = college degree, 3 = graduate degree) and 
household income during students' senior year of high school.  
(M = 0.00, SD = 0.86, nonresponse rate = 0.1%, intraclass correlation = .05, correlation with 
first-semester STEM course taking = .04). 
 

High school variables 
 ap_STEM Number of AP STEM courses taken. Possible courses: biology, 

calculus, chemistry, computer science, environmental science, and/or 
physics.  
(M = 1.04, SD = 1.06, nonresponse rate = 0.1%, intraclass correlation = .08, correlation with 
first-semester STEM course taking = .07). 
 

 ap_nonSTEM  Number of AP non-STEM courses. Possible courses: art, economics, 
English, foreign language, government, music, psychology, U.S. 
history, and/or world history.  
(M = 1.96, SD = 1.47, nonresponse rate = 0.1%, intraclass correlation = .15, correlation with 
first-semester STEM course taking = -.12). 
 

 hs_gpa_STEM  Grade Point Average in high school STEM courses (averaged across 
mathematics and natural science courses).  
(M = 3.54, SD = 0.52, nonresponse rate = 0.2%, intraclass correlation = .09, correlation with 
first-semester STEM course taking = .09). 
 

 hs_gpa_nonSTEM Grade Point Average in high school non-STEM courses (averaged 
across English, foreign language, history, and social studies courses). 
(M = 3.75, SD = 0.34, nonresponse rate = 0.2%, intraclass correlation = .09, correlation with 
first-semester STEM course taking = .00). 
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 diff_STEM Students’ ratings of the degree of difficulty of high school STEM 
courses (averaged across mathematics and natural science courses). 
Rating scale ranged 0 to 10.  
(M = 5.48, SD = 2.13, nonresponse rate = 0.1%, intraclass correlation = .03, correlation with 
first-semester STEM course taking = -.14). 
 

 diff_nonSTEM Students’ ratings of the degree of difficulty of high school non-STEM 
courses (averaged across English, foreign language, history, and 
social studies courses). Rating scale ranged 0 to 10.  
(M = 4.08, SD = 1.86, nonresponse rate = 0.1%, intraclass correlation = .00, correlation with 
first-semester STEM course taking = .04). 
 

 SAT_M SAT – Mathematics score.  
(M = 643, SD = 89, nonresponse rate = 35.4%, intraclass correlation = .11, correlation with 
first-semester STEM course taking = -.07). 
 

 SAT_V SAT – Verbal score.  
(M = 650, SD = 84, nonresponse rate = 35.2%, intraclass correlation = .19, correlation with 
first-semester STEM course taking = -.10). 
 
 

Fall freshman variables 

 ug_STEM Number of STEM courses completed during the first semester or 
quarter of college.  
(M = 1.20, SD = 1.05, nonresponse rate = 2.6%, intraclass correlation = .17). 
 

 init_premed Dummy code for having declared a pre-medicine major during 
freshman year.  
(M = 0.08, SD = 0.27, nonresponse rate = 0%, intraclass correlation = .04, correlation with 
first-semester STEM course taking = .40). 
 
 

Institution-level variables 

 ug_STEM_mn Mean number of STEM courses taken by schools’ non-STEM 
intenders during the first semester or quarter of college.  
 

 premed_intensive Dummy code for attending a school with a high proportion (above a 
median split) of premed intenders among non-STEM intenders.  
 

 STEM_intensive Dummy code for attending a STEM-intensive school. Defined by a 
high proportion (above a median split) of freshmen who intended a 
STEM major (excluding undecided students).  
 

 public_uni Dummy code for attending a public university.  
 

 liberal_arts Dummy code for attending a liberal arts college.  
 

 most_selective Dummy code for attending one of the more selective NLSF 
institutions. Defined by a high mean total SAT score (above a median 
split among NLSF institutions).  
 

Outcome variable  

 final_STEM Dummy code for later joining STEM.  
(M = 0.09, SD = 0.28, intraclass correlation = .09, correlation with first-semester STEM 
course taking = .28). 
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Table S2 

Descriptions of variables included in inferential analyses of the Project TALENT sample (n = 

19,762).  

Variable name Description 
Demographic variables 
 male Dummy code for being male.  

(M = 0.40, SD = 0.49, nonresponse rate = 0%, intraclass correlation = .43, correlation with 
early-college STEM course taking = .03).  
 

 Asian Dummy code for being Asian.  
(M = 0.01, SD = 0.10, nonresponse rate = 0.5%, intraclass correlation = .59, correlation with 
early-college STEM course taking = .03). 
 

 racial_minor Dummy code for being a non-Asian racial/ethnic minority. These 
racial/ethnic minorities were collapsed into this category because of 
small sample sizes.  
(M = 0.02, SD = 0.15, nonresponse rate = 0.5%, intraclass correlation = .86, correlation with 
early-college STEM course taking = .05). 
 

 parent_STEM Dummy code for having at least one parent employed in a STEM 
field when students were first sampled in high school.  
(M = 0.06, SD = 0.23, nonresponse rate = 4.0%, intraclass correlation = .06, correlation with 
early-college STEM course taking = .00). 
 

 SES Composite index of socioeconomic status, created by the original 
Project TALENT researchers. Based on parents’ highest level of 
education, household income, and presence of certain household 
items (e.g., television set). See Wise et al. (1979) for details. We 
computed z scores for this variable using the mean and standard 
deviation of the entire Project TALENT sample (e.g., based on the 
statistics below, the socioeconomic status of our analyzed subsample 
was 0.77 SDs above the 1960 high school population).  
(M = 0.77, SD = 0.85, nonresponse rate = 3.2%, intraclass correlation = .29, correlation with 
early-college STEM course taking = -.04). 
 

High school variables (analogous to those in NLSF) 
 hs_STEM_crs Percent of high school courses taken in math and science. 

(M = 39.5, SD = 9.6, nonresponse rate = 7.2%, intraclass correlation = .14, correlation with 
early-college STEM course taking = .11). 
 

 hs_gpa_STEM  Grade Point Average in high school STEM courses (averaged across 
mathematics and science courses).  
(M = 3.24, SD = 0.66, nonresponse rate = 4.4%, intraclass correlation = .13, correlation with 
early-college STEM course taking = .07). 
 

 hs_gpa_nonSTEM Grade Point Average in high school non-STEM courses (averaged 
across English, foreign language, history, and social studies courses). 
(M = 3.38, SD = 0.57, nonresponse rate = 4.3%, intraclass correlation = .12, correlation with 
early-college STEM course taking = .01). 
 

 verbal_conf Composite measure of students’ verbal confidence (average on 5-
point Likert scale). Based on seven items (α = 0.76). Example item = 
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“I have a difficult time expressing myself in written reports, 
examinations, and assignments” (reverse-coded). No comparable 
measure was available for mathematics confidence. 
(M = 3.90, SD = 0.66, nonresponse rate = 3.2%, intraclass correlation = .05, correlation with 
early-college STEM course taking = -.03). 
 

 math_test Composite measure of standardized mathematics performance. Based 
on four subtests. See Wai et al. (2009) for details. We computed z 
scores for this variable using the mean and standard deviation of the 
entire Project TALENT sample. 
(M = 0.95, SD = 0.84, nonresponse rate = 0%, intraclass correlation = .32, correlation with 
early-college STEM course taking = -.04). 
 

 verbal_test Composite measure of standardized verbal performance. Based on 
three subtests. See Wai et al. (2009) for details. We computed z 
scores for this variable using the mean and standard deviation of the 
entire Project TALENT sample. 
(M = 0.96, SD = 0.62, nonresponse rate = 0%, intraclass correlation = .39, correlation with 
early-college STEM course taking = -.02). 
 
 

Early-college STEM course-taking*
 

 ug_STEM The number of STEM departments that students had taken courses in 
by the time of first longitudinal follow-up (~1.5 years after high 
school graduation). Range = 0 to 4 (possible departments = biological 
science, engineering, mathematics, physical science). Information on 
the number of courses taken was not available. However, in the 
NLSF sample, we found that the number of first-year STEM courses 
correlated highly with the number of first-year STEM departments (r 
= .83, where the categories of “departments” matched the categories 
available for Project TALENT: biological science, mathematics, 
physical science, and other). 
(M = 1.49, SD = 0.85, nonresponse rate = 1.6%, intraclass correlation = .26). 
 
 

High school variables (not in NLSF) 

 hs_STEM_degree Dummy code for intending a STEM college major when students 
were in high school.  
(M = 0.18, SD = 0.39, nonresponse rate = 4.9%, intraclass correlation = .07, correlation with 
early-college STEM course taking = .12). 
 

 hs_STEM_both Dummy code for both intending a STEM college major and future 
STEM employment when students were in high school.  
(M = 0.12, SD = 0.32, nonresponse rate = 4.1%, intraclass correlation = .10, correlation with 
early-college STEM course taking = .10). 
 

 STEM_interest Composite measure of students’ interests in STEM activities (10 
items) and STEM occupations (14 items). The items about activities 

                                                
*Note that there was no variable for intending a pre-medicine major because the survey form for 
the first follow-up did not provide a response category for intending a health/medicine major. 
The closest response option was “biological science,” which would have excluded students from 
the present analysis if they had selected it. 
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asked students to indicate “how much you like or would like each of 
the following” and listed activities such as “study physics” or “learn 
about diseases.” Students completed similar items about STEM 
occupations such as “chemist” and “research scientist.” When 
answering items about occupations, students were instructed to, 
“assume that you would have any necessary training or education that 
would be required. Disregard salary, social standing, permanence, 
etc., in fact anything except how well you would like to do the work.” 
Project TALENT researchers created subscales for interests in 
physical science and biological science/medicine (see Wise et al., 
1979 for more details), and we averaged z-scores for those subscales 
to form the STEM_interest variable. 
 (M = 0.22, SD = 0.84, nonresponse rate = 0.4%, intraclass correlation = .05, correlation with 
early-college STEM course taking = .10). 
 

 nonSTEM_interest Composite measure of students’ interests in non-STEM activities (22 
items) and occupations (32 items). Based on averaging z-scores to 
Project TALENT-created subscales for artistic, business, literary-
linguistic, musical, and social service interests. Example activities = 
help the poor, manage a large store, play an instrument, teach 
children. Example occupations = banker, lawyer, musician, office 
manager.  
(M = 0.34, SD = 0.70, nonresponse rate = 0.3%, intraclass correlation = .05, correlation with 
early-college STEM course taking = -.08). 
 

 STEM_info Composite measure of students’ knowledge of STEM-related 
information. Based on averaging z-scores to Project TALENT-
created subscales for aeronautics and space, biological science, 
engineering, electricity and magnetism, and physical science domains 
(65 total items). We interpret this variable as a behavioral indicator of 
students’ interests in STEM because many of the items focused on 
information that students would have learned outside of formal 
instruction (see Wise et al., 1979 for further description). High scores 
on this variable would therefore in part reflect students’ behaviors to 
learn STEM-related information outside of formal instruction (e.g., 
following news coverage about Sputnik’s launch in 1957). 
 

Example items: The minimum speed a rocket needs in order to get 
beyond the range where gravity will pull it back to earth is called (A) 
thrust, (B) anti-gravity pull, (C) gravitational acceleration, (D) escape 
velocity, or (E) gravity cancellation speed. 
 

On some electrical equipment, the plug has a third prong. This 
provides (A) a boost in current, (B) an increase in voltage, (C) a 
ground, (D) transfer from AC to DC, or (E) transfer from DC to AC. 
 

 (M = 0.44, SD = 0.69, nonresponse rate = 0%, intraclass correlation = .21, correlation with 
early-college STEM course taking = .04).  
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 nonSTEM_info Composite measure of students’ knowledge of information in the 

non-STEM domains of art, business, law, literature, music, and social 
studies. Based on averaging z-scores to Project TALENT-created 
subscales (92 total items). 
(M = 0.76, SD = 0.63, nonresponse rate = 0%, intraclass correlation = .30, correlation with 
early-college STEM course taking = -.08). 

 
 

 spatial_test 
 

Composite measure of standardized spatial performance. Based on 
four subtests. See Wai et al. (2009) for details. We computed z scores 
for this variable using the mean and standard deviation of the entire 
Project TALENT sample. 
(M = 0.48, SD = 0.82, nonresponse rate = 0%, intraclass correlation = .16, correlation with 
first-semester STEM course taking = .04). 
 

Institution-level variables 

 ug_STEM_mn The means of the ug_STEM variable at students’ institutions.    
 
 

 Other variables The means of other variables at students’ institutions (these variables 
were male, parent_STEM, hs_STEM_crs, hs_gpa_STEM, math_test, 
hs_STEM_degree, STEM_interest, nonSTEM_interest, STEM_info, 
and spatial_test). These particular variables were selected for the 
institution-level model because they predicted STEM joining at the 
student level. 
 

Outcome variable  

 final_STEM Dummy code for later joining STEM.  
(M = 0.02, SD = 0.14, intraclass correlation = .16, correlation with first-semester STEM 
course taking = .08). 
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Table S3 

Educational backgrounds and trajectories of STEM joiners, compared to students from other 

educational pathways (BPS sample). Values on the top are weighted mean estimates and values 

in parentheses are standard errors. ***p < .001. **p < .01. *p < .05. †p < .10.  

   
Comparison Groups 

 STEM joiners 
versus… 

STEM 
persisters 

Non-STEM 
persisters 

STEM switch-
outs 

 

High school 
 

    

Took calculus 
 

49% 
(5%) 

 

59%† 
(3%) 

25%*** 
(1%) 

38%† 
(3%) 

Took 4 years or  
more of science 

 

57% 
(5%)  

 

67%† 
(2%) 

50% 
(1%) 

65% 
(4%) 

SAT Mathematics score 
 

570 
(10) 

 

610*** 
(6) 

529*** 
(3) 

550 
(8)   

SAT Verbal score 
 

536 
(8) 

 

570*** 
(5) 

537 
(3) 

542 
(7) 

Composite GPA 
 
 

3.51 
(0.035) 

 

3.57 
(0.015) 

3.43* 
(0.015) 

3.48 
(0.03) 

First year in college 
 

    

Number of STEM  
credits earned 

 

12.7 
(0.8) 

 

18.7*** 
(0.4) 

6.1*** 
(0.1) 

11.1† 
(0.6) 

Number of total  
credits earned 

 

30.2 
(0.6) 

31.9* 
(0.4) 

29.4 
(0.2) 

27.8** 
(0.7) 

% of credits that were 
earned in STEM 

 

42% 
(2%) 

 

58%*** 
(1%) 

21%*** 
(0.5%) 

40% 
(2%) 

Earned credit in 
calculus/advanced math 

 

41% 
(5%) 

 

68%*** 
(3%) 

14%*** 
(1%) 

38% 
(4%) 

Withdrawn or failed a 
STEM course  

 

12% 
(3%) 

 

9% 
(2%) 

10% 
(1%) 

15% 
(3%) 

STEM GPA 
 

3.01 
(0.07) 

 

3.13 
(0.04) 

2.96 
(0.03) 

2.71*** 
(0.06) 

Non-STEM GPA 
3.27 

(0.05) 

3.36 
(0.03) 

3.21 
(0.02) 

3.16† 
(0.05) 
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Cumulative outcomes in college 

 

   

Graduate 
within 4 years 

 

55% 
(6%) 

 

58% 
(3%) 

62% 
(1%) 

48% 
(4%) 

Graduate 
within 5 years 

 

91% 
(2%) 

 

93% 
(1%) 

93% 
(1%) 

90% 
(3%) 

Cumulative STEM GPA 
 

3.02 
(0.05) 

 

3.12† 
(0.03) 

2.94 
(0.02) 

2.77*** 
(0.05) 

Cumulative non-STEM 
GPA 

 

3.32 
(0.05) 

 

3.39 
(0.03) 

3.28 
(0.02) 

3.23† 
(0.03) 

% withdrawn/failed STEM 
courses out of attempted 

 

2.5% 
(0.3%) 

1.8%† 
(0.2%) 

3.8%** 
(0.4%) 

5.2%*** 
(0.6%) 

Number of total STEM 
courses taken 

 

26.4 
(1.1) 

33.7*** 
(0.8) 

6.9*** 
(0.2) 

14.3*** 
(0.8) 

Number of total non-
STEM courses taken 

 

25.2 
(1.2) 

 

18.9*** 
(0.5) 

42.0*** 
(0.4) 

35.9*** 
(0.8) 

Number of STEM  
credits earned 

 

71.1 
(2.9) 

90.1*** 
(1.9) 

19.4*** 
(0.4) 

38.1*** 
(2.1) 

Graduated with  
double major 

 

15.2 
(2.8) 

8.1 
(1.3) 

13.4 
(0.9) 

8.3 
(2.1) 

Sample size ~200 ~700 ~2,700 ~300 
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Table S4 

Unstandardized coefficients for multilevel logistic regression models of STEM joining (NLSF 

sample, n = 1,108). The coefficients for the SAT variables have been multiplied by 100 to 

facilitate presentation of results. Models 1-4 were unweighted and Model 5 weighted students by 

probability survey weights. ***p < .001. **p < .01. *p < .05. †p < .10. 

Predictor Model 1 Model 2 Model 3 Model 4 Model 5 
 

Demographic variables 
male 0.51* 0.40 0.42 0.39 0.68 

Asian 0.53† 0.36 0.04 0.03 -0.36 
Black -0.37 -0.26 -0.43 -0.45 -0.28 

Hispanic -0.07 -0.03 -0.20 -0.22 -0.88† 
parent_STEM 0.46 0.45 0.36 0.40 -0.30 

SES -0.08 -0.13 -0.17 -0.18 -0.44 
      

High school variables 
ap_STEM  0.33** 0.20 0.20 0.19 

hs_gpa_STEM  0.19 0.16 0.19 0.40 
diff_STEM  -0.16* -0.07 -0.06 0.11 

SAT_M  -0.19 0.11 0.17 0.22 
ap_nonSTEM  -0.02 0.08 0.08 0.29 

hs_gpa_nonSTEM  0.08 -0.34 -0.39 -0.35 
diff_nonSTEM  0.13† 0.02 0.02 0.13 

SAT_V  0.10 0.02 -0.01 0.20 
      

Fall freshman variables 
ug_STEM   0.50*** 0.50*** 1.00*** 

init_premed   2.03*** 1.97*** 2.22*** 
      

Institution-level variables 
ug_STEM_mn    0.46 2.07** 

premed_intensive    0.92* 1.46 
STEM_intensive    0.75** 2.21** 

public_uni    -0.62† -0.83 
liberal_arts    0.41 1.57† 

most_selective    0.16 0.44 
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Table S5 

Unstandardized coefficients for multilevel logistic regression models of STEM joining (Project 

TALENT sample, n = 19,762). Models 1-5 were unweighted and Model 6 weighted students by 

probability survey weights. The coefficients for the hs_STEM_crs variable has been multiplied 

by 10 to facilitate presentation of results. All models also included dummy codes for the high 

school cohort (e.g., originally tested in 9th grade vs. 10th grade in high school). We also estimated 

models separately for each high school cohort and found no differences in regression coefficients 

for ug_STEM across cohorts. ***p < .001. **p < .01. *p < .05. †p < .10. 

Predictor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
 

Demographic variables  

male 1.15*** 1.04*** 0.97*** 0.22 0.25 0.18 
Asian 0.74 0.60 0.48 0.25 0.20 0.24 

racial_minor 0.20 0.47 0.53 0.51 0.52 0.70 
parent_STEM 0.43* 0.42* 0.42* 0.32 0.32 0.42† 

SES -0.06 -0.04 -0.05 -0.06 -0.05 -0.10 
       

High school variables (analogous to those in NLSF) 
hs_STEM_crs  0.26*** 0.26*** 0.15* 0.15* 0.14* 

hs_gpa_STEM  0.47*** 0.42** 0.16 0.17 0.13 
math_test  0.35*** 0.30** 0.12 0.13 0.13 

hs_gpa_nonSTEM  -0.14 -0.11 0.16 0.09 0.10 
verbal_conf  -0.12 -0.10 -0.10 -0.11 -0.12 
verbal_test  -0.14 -0.12 -0.17 -0.14 -0.08 

       
Early college STEM course-taking  

ug_STEM   0.51*** 0.38*** 0.37*** 0.37*** 
       

High school variables (not in NLSF)     
hs_STEM_degree    0.52** 0.49** 0.49** 

hs_STEM_both    -0.14 -0.18 -0.11 
STEM_interest    0.55*** 0.56*** 0.57*** 

nonSTEM_interest    -0.34*** -0.34*** -0.28** 
STEM_info    0.31* 0.29* 0.28* 

nonSTEM_info    -0.29† -0.34* -0.37* 
spatial_test    0.34*** 0.36*** 0.38*** 
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Institution-level variables 

ug_STEM_mn     0.34* 0.39** 
male_mn     -0.29 -0.39 

parent_STEM_mn     0.61 0.58 
hs_STEM_crs_mn     0.21† 0.20* 

hs_gpa_STEM_mn     -0.03 -0.11 
math_test_mn     0.24 0.33 

hs_STEM_degree_mn     1.29* 1.51** 
STEM_interest_mn     0.54† 0.58* 

nonSTEM_interest_mn     -0.67† -0.81* 
STEM_info_mn     -0.82* -0.83* 
spatial_test_mn     1.27*** 1.17*** 
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Table S6 

Additional results about the effect of early-college STEM course taking on later STEM joining.  

Key result Additional detail 
1. Diverse pre-college 
variables were weak 
predictors of first-
semester STEM 
course-taking among 
non-STEM intenders.  

The self-selection hypothesis predicted that, among non-STEM 
intenders, endogenous factors such as prior STEM course-taking and 
STEM attitudes should have explained variance in first-semester 
STEM course-taking. However, among non-STEM intenders, the 
correlations between these pre-college factors and first-semester STEM 
course-taking were small (all observed rs < .15, Table S3). For 
instance, among non-STEM intenders in NLSF, only 4.7% of the 
observed variance in first-semester STEM course-taking was explained 
by gender, race/ethnicity, socioeconomic status, parents’ employment 
in STEM fields, SAT scores, high school AP STEM and non-STEM 
course-taking, high school STEM and non-STEM grades, and 
perceived difficulty of STEM and non-STEM courses (see Table S3). 
Analogous variables in Project TALENT explained only 4.3% of the 
variance in early-college STEM course-taking; including other 
variables such as occupational plans and prior interests in STEM only 
explained another 1.2% of the total variance (see Table S4). 
 

2. Pre-college 
variables were 
weaker predictors of 
first-semester STEM 
course-taking among 
non-STEM intenders 
than among 
undecided students. 
 

Pre-college variables in NLSF explained 12.6% of first-semester 
STEM course-taking among undecided students. Hence, self-
selection due to observed covariates among undecided students was 
nearly three times as strong as among non-STEM intenders. This 
finding supports the notion that self-selection was weaker among 
non-STEM intenders.  
 

3. Compared to pre-
college variables, 
institutional factors 
explained more 
variance in first-
semester STEM 
course-taking among 
non-STEM 
intenders. 
 

Multilevel models indicated that 17% of the observed variance in 
first-semester STEM course-taking (among non-STEM intenders) 
was explained by between-institution heterogeneity. This 
heterogeneity likely reflected, in part, external factors such as 
institutional requirements for first-year courses and graduation.  
 

4. Causal estimates 
were robust to 
plausible 

We used simulation-based methods, initially developed by Ichino, 
Mealli, and Nannicini (2008), to evaluate the potential consequences 
of unobserved confounders. These methods flexibly simulated how 
hypothetical confounders would have influenced selection into 
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confounders that 
were not measured.  

treatment (STEM course-taking) and potential treatment outcomes 
(STEM joining). These simulations then used propensity score 
matching (Austin, 2011) to quantify how such confounders would 
have changed our causal estimates of STEM course taking. We used 
the sensatt command in the statistical software Stata to conduct these 
analyses (19). We describe the details below.  
 

•� Notation: We used the same notation as Ichino et al. (2008). The 
variable U was an unobserved confounder, the selection effect Λ 
was the average odds ratio of U in logistic regression models 
predicting treatment status, and the outcome effect Γ was the 
average odds ratio of U in models predicting the treatment 
outcome. We defined the confound effect as ln(Λ) × ln(Γ), which 
would equal 0 if the variable U did not relate to selection (Λ = 1) 
or the outcome (Γ = 1). 

•� Model assumptions: The unobserved confounder U was assumed 
to be binary (i.e., U = 0 or U = 1), moderately prevalent (U = 1 
for 40% of cases, on average), and uncorrelated with other 
predictor variances. Using Monte Carlo simulations and empirical 
examples, Ichino et al. showed that their simulation method 
yielded similar results for alternate specifications (e.g., assuming 
a continuous confounder or different prevalences for U = 1). 

•� Simulation parameters: We varied the selection effect Λ and 
treatment effect Γ by manipulating the probabilities that U = 1 in 
the four treatment-outcome cells (e.g., the probability that U = 1 
among untreated STEM joiners). We used the same sets of 
parameter values that Ichino et al. used (e.g., the mean difference 
in U between treatment and untreated individuals varied from 0.1 
to 0.7). These values covered a wide range of confound effects. 
We ran 1,000 simulations for 49 sets of parameter values (in total, 
49,000 simulations).  

•� Results: The confound effect, ln(Λ) × ln(Γ), linearly related to 
causal estimates: ATT = 5.1% – 0.9% × confound effect. 
Regression model statistics (R2 = .98, RMSE = 0.4%) and visual 
inspection of scatterplots indicated that a linear model well 
summarized the data (e.g., it explained 98% of the variance in 
estimates).  

•� Based on these simulations, a confound effect of 2.8 would have 
reduced our ATT causal estimate by 50% and a confound effect of 
5.6 would have reduced the estimate to 0. Such confound effects 
are implausibly large. For instance, the confound effect for the 
perceived difficulty of STEM courses (variable name = 
diff_STEM) was 0.30. In Project TALENT, the confound effect for 
intending a college STEM major while in high school (variable 
name = hs_STEM_degree) was 0.57. Given that these observed 
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covariates had some of the largest confound effects in NLSF and 
Project TALENT, an unobserved confound effect of 2.8 was 
unlikely.  

•� A confound effect of 2.8 would have required that the unobserved 
confounder U quintupled the odds of selecting treatment (i.e., Λ = 
5), assuming equal selection and outcome effects (i.e., Λ = Γ). As 
discussed earlier (Results 1–3), such large self-selection effects 
are implausible. Confounders with smaller selection effects (i.e., 
Λ < 5) could have had the same confound effect, but only if the 
outcome effect was larger (i.e., Γ > 5).  

•� Conclusion: Our results were robust to plausible hidden biases; 
only unobserved variables with implausibly large confounding 
effects would have substantially reduced our causal estimates. 
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Table S7 

Calculations about the hypothetical scenarios described in the main text.  

Quote from the main text Additional explanation 
 

“For instance, we estimated 
that increasing the joining rate 
by 5 percentage points would 
generate between 26,000 to 
63,000 more STEM graduates 
per year, depending on the 
definition of potential STEM 
joiners.” 

Strictest definition of STEM joiners = STEM bachelor’s 
degree earners who initially intended a non-STEM major 
and started postsecondary education at a 4-year institution 
(this definition is the primary focus of this current 
manuscript and does not include beginning 2-year students, 
initially undecided students, or students whose highest 
degree was an associate’s degree) 
 
Broadest definition of STEM joiners = STEM bachelor’s 
degree earners or STEM associate’s degree earners who 
were initially undecided or intended a non-STEM major and 
started postsecondary education at a 4-year or 2-year 
institution. For students who earned both a bachelor’s and 
associate’s degree, we used only the field of study for the 
bachelor’s degree. Hence, students who earned a STEM 
associate’s degree and non-STEM bachelor’s degree would 
not be considered STEM joiners because their highest 
earned degree was not in STEM. This definition also meant 
that we did not double-count students who earned both a 
STEM associate’s degree and STEM bachelor’s degree.  
 
Example calculation for strictest definition: 
 
Pool of potential STEM joiners = bachelor’s degree earners 
who had initially intended a non-STEM major and started at 
a 4-year university = 518,600 
 
Effect of increasing joining rate by 5% = 518,600 × 5% = 
26,000 more STEM bachelor’s degrees per year 
 
These estimates are likely conservative because the total 
number of U.S. undergraduates has increased since the BPS 
study. For instance, based on data from the Integrated 
Postsecondary Education Data System, the number of first-
time freshman enrolled at 4-year institutions increased by 
11% from 2004 to 2012.  
 

“Increasing women’s rate to 
join pSTEM fields to match 
men’s would generate 38% 

Men’s pSTEM joining rate = 5.0% 
Women’s pSTEM joining rate = 1.8% 
Difference in rates = 3.2% 
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more female graduates in these 
male-dominated fields” 

 
Number of female graduates who initially intended a non-
STEM major = 337,700 
 
Number of additional female pSTEM graduates generated 
by increasing women’s joining rate to match men’s = 
337,700 × 3.2% = 10,806 
 
Number of current female pSTEM graduates = 28,300 
 
Percent increase in female pSTEM graduates = 
10,806/28,300 = 38% 
 
We adjusted the numbers in Figure 7 by a multiplicative 
constant so that numbers representing “current supply” 
match the number of pSTEM bachelor’s degrees awarded in 
2012. This adjustment was based on population-level data 
from Integrated Postsecondary Education Data System. 
 

“For instance, women currently 
earn 25% of the U.S.’s pSTEM 
bachelor’s degrees, and 
‘plugging’ the leaky pSTEM 
pipeline for female 
undergraduates would only 
increase this percentage to 
27%” 

Men’s pSTEM switch-out rate = 30.3% 
Women’s pSTEM switch-out rate = 41.1% 
Difference in rates = 10.8% 
 
Weighted sample size of female graduates who initially 
intended pSTEM major = 24,400 
 
Number of additional female pSTEM graduates generated 
by increasing women’s switch-out rate to match men’s = 
24,400 × 10.8% = 2,635 
 
Number of current female pSTEM graduates = 28,300 
 
Number of current male pSTEM graduates = 85,400 
 
Current percentage of females among pSTEM graduates = 
28,300/(28,300 + 85,400) = 25% 
 
[NOTE: this estimate of 25% aligns with current population-
level data available through the Integrated Postsecondary 
Education Data System] 
 
Percent of females among pSTEM graduates if women’s 
switch-out rate was changed to match men’s = (28,300 + 
2,635)/(28,300 + 2,635 + 85,400) = 27% 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


